Math, asked by XxMissInnocentxX, 4 days ago

Answer This:-
๑MoDs
๑Stars
๑Best Users

 \sf \red{Question:}
☆ Show that if the diagonals of the quadrilateral are equal and bisect each other at right angles, then it is a square.

Note:-
❒Need Quality Answer!
❒No - Copied Answer Plz!
❒Don't Spam
-------------------------------------------------------------
Hoping for a good änswer! :D​

Answers

Answered by Anonymous
57

 \star \; {\underline{\boxed{\pmb{\orange{\frak{ \; Given \; :- }}}}}}

  • ABCD is a Quadrilateral
  • AC = BD
  • OA = OC and OB = OD
  • ∠AOB = ∠BOC = ∠COD = ∠AOD = 90°

 \\ {\underline{\rule{200pt}{3pt}}}

 \star \; {\underline{\boxed{\pmb{\color{darkblue}{\frak{ \; To \; Prove \; :- }}}}}}

  • ABCD is a Square

 \\ {\underline{\rule{200pt}{3pt}}}

 \star \; {\underline{\boxed{\pmb{\red{\frak{ \; ProoF \; :- }}}}}}

Here :-

 {\underline{\textbf{\textsf{ In \; ∆AOB \; and \; ∆COB \; : }}}}

 \begin{gathered} \dashrightarrow \; \; \sf { OA = OC \qquad \; \bigg( Given \bigg) } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠AOB = ∠COB \qquad \; \bigg( Each \; 90° \bigg) } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { OB = OB \qquad \; \bigg( Common \bigg) } \\ \end{gathered}

 \\

 \therefore \; ∆AOB ≈ ∆COB by SAS Congruence Criteria .

Hence :-

 \begin{gathered} \implies \; \; {\underline{\boxed{\pmb{\sf{ AB = CB }}}}} \; {\purple{\bigstar}} \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

Similarly :-

 {\underline{\textbf{\textsf{ In \; ∆AOB \; and \; ∆DOA \; : }}}}

 \\

 \therefore \; ∆AOB ≈ ∆DOA by SAS Congruence Criteria .

Hence :-

 \begin{gathered} \implies \; \; {\underline{\boxed{\pmb{\sf{ AB = AD }}}}} \; {\green{\bigstar}} \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

Similarly :-

 {\underline{\textbf{\textsf{ In \; ∆BOC \; and \; ∆COD \; : }}}}

 \\

 \therefore \; ∆BOC ≈ ∆COD by SAS Congruence Criteria .

Hence :-

 \begin{gathered} \implies \; \; {\underline{\boxed{\pmb{\sf{ CB = DC }}}}} \; {\orange{\bigstar}} \end{gathered}

 \\

 \therefore \; We have proved that ABCD is a Parallelogram .

 \\ \qquad{\rule{150pt}{1pt}}

Here :-

 {\underline{\textbf{\textsf{ In \; ∆ABC \; and \; ∆DCB \; : }}}}

 \begin{gathered} \dashrightarrow \; \; \sf { AC = BD \qquad \; \bigg( Given \bigg) } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { AB = DC \qquad \; \bigg( Opp. \; Sides \; are \; Eql \bigg) } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { BC = BC \qquad \; \bigg( Common \bigg) } \\ \end{gathered}

 \\

 \therefore \; ∆ABC ≈ ∆DCB by SSS Congruence Criteria .

Hence :-

 \begin{gathered} \implies \; \; {\underline{\boxed{\pmb{\sf{ ∠ABC = ∠DCB }}}}} \; {\blue{\bigstar}} \end{gathered}

 \\

Now :-

 {\underline{\textbf{\textsf{ AB \;  || \; CD \; and \; BC \; is \; the \; Transversal \; : }}}}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠ABC + ∠DCB = 180° \qquad \; \bigg( Alternate \; Interior \; Angles \bigg) } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠ABC + ∠DCB = 180° } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠ABC + ∠ABC = 180° } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { 2∠ABC = 180° } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠ABC = \dfrac{180}{2} } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠ABC = \cancel\dfrac{180}{2} } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; {\underline{\boxed{\pmb{\sf{ ∠ABC = 90° }}}}} \; {\red{\bigstar}} \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

 \therefore \; ABCD is a Square with one angle 90° .

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by pdpooja100
4

\huge\star{\blue{\underline{\underline{\tt{Explanation:}}}}}

 \rule{210pt}{0.5pt}

Given that,

  • Let ABCD be a quadrilateral
  • It's iagonals AC and BD bisect each other at right angle at O.

To prove that,

  • The Quadrilateral ABCD is a square.

Proof,

In ΔAOB and ΔCOD,

\leadsto AO = CO (Diagonals bisect each other)

\leadsto ∠AOB = ∠COD (Vertically opposite)

\leadsto OB = OD (Diagonals bisect each other)

,\leadsto ΔAOB ≅ ΔCOD [SAS congruency]

Thus,

\leadsto AB = CD [CPCT] — (i)

also,

∠OAB = ∠OCD (Alternate interior angles)

⇒ AB || CD

Now,

\leadsto In ΔAOD and ΔCOD,

\leadsto AO = CO (Diagonals bisect each other)

\leadsto ∠AOD = ∠COD (Vertically opposite)

\leadsto OD = OD (Common)

\leadsto ΔAOD ≅ ΔCOD [SAS congruency]

Thus,

AD = CD [CPCT] ____ (ii)

also,

AD = BC and AD = CD

⇒ AD = BC = CD = AB ____ (ii)

also, ∠ADC = ∠BCD [CPCT]

and ∠ADC + ∠BCD = 180° (co-interior angles)

⇒ 2∠ADC = 180°

⇒ ∠ADC = 90° ____ (iii)

One of the interior angles is right angle.

Thus, from (i), (ii) and (iii) given quadrilateral ABCD is a square.

\large\star{\tt{\red{\underline{Hence\:Proved!}}}}

\begin{gathered} \\ {\underline{\rule{300pt}{9pt}}} \end{gathered}

Attachments:
Similar questions