Math, asked by SHINCHANGIRL, 5 months ago

answer this........

No spam ❌ ​

Attachments:

Answers

Answered by IdyllicAurora
38

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept\;:-}}}

Here the Concept of Algebraic Identities had been used. We are given the equations. Firstly we will apply the identities and expand them. Then we will reduce them by taking the terms in common and hence, the simplification will be done.

Let's do it !!

_____________________________________________

Identities Used :-

\\\;\boxed{\sf{(x\;-\;y)^{2}\;=\;\bf{x^{2}\;+\;y^{2}\;-\;2xy}}}

\\\;\boxed{\sf{(x\;+\;y)^{2}\;=\;\bf{x^{2}\;+\;y^{2}\;+\;2xy}}}

_____________________________________________

Solution :-

1.] (a² - b²)²

2.] (ab + bc)² - 2ab²c

_____________________________________________

1.) (a² - b²)² ::

Here we can apply the first identity that is,

\\\;\rm{:\rightarrow\;\;(x\;-\;y)^{2}\;=\;\bf{x^{2}\;+\;y^{2}\;-\;2xy}}

  • Here x = a² and y = b²

\\\;\sf{:\Longrightarrow\;\;(a^{2}\;-\;b^{2})^{2}\;=\;\bf{(a^{2})^{2}\;+\;(b^{2})^{2}\;-\;2(a^{2})(b^{2})}}

\\\;\bf{:\Longrightarrow\;\;(a^{2}\;-\;b^{2})^{2}\;=\;\bf{a^{4}\;+\;b^{4}\;-\;2a^{2}b^{2}}}

\\\;\underline{\boxed{\tt{(a^{2}\;-\;b^{2})^{2}\;=\;\bf{\blue{a^{4}\;+\;b^{4}\;-\;2a^{2}b^{2}}}}}}

_____________________________________________

2.) (ab + bc)² - 2ab²c

Here we can apply the second identity that is,

\\\;\rm{:\rightarrow\;\;(x\;+\;y)^{2}\;=\;\bf{x^{2}\;+\;y^{2}\;+\;2xy}}

  • Here x = ab and y = bc

\\\;\rm{:\Longrightarrow\;\;(ab\;+\;bc)^{2}\;-\;2ab^{2}c\;=\;\bf{(ab)^{2}\;+\;(bc)^{2}\;+\;2(ab)(bc)\;-\;2ab^{2}c}}

\\\;\rm{:\Longrightarrow\;\;(ab\;+\;bc)^{2}\;-\;2ab^{2}c\;=\;\bf{a^{2}\:b^{2}\;+\;b^{2}\:c^{2}\;+\;2ab^{2}c\;-\;2ab^{2}c}}

\\\;\rm{:\Longrightarrow\;\;(ab\;+\;bc)^{2}\;-\;2ab^{2}c\;=\;\bf{a^{2}\:b^{2}\;+\;b^{2}\:c^{2}}}

\\\;\underline{\boxed{\tt{(ab\;+\;bc)^{2}\;-\;2ab^{2}c\;=\;\bf{\green{a^{2}\:b^{2}\;+\;b^{2}\:c^{2}}}}}}

_____________________________________________

More Identities to know :-

\\\;\sf{\leadsto\;\;(x\;+\;a)(x\;+\;b)\;=\;x^{2}\;+\;(a\;+\;b)x\;+\;ab}

\\\;\sf{\leadsto\;\;(a\;-\;b)(a\;+\;b)\;=\;a^{2}\;-\;b^{2}}

\\\;\sf{\leadsto\;\;(a\;+\;b\;+\;c)^{2}\;=\;a^{2}\;+\;b^{2}\;+\;c^{2}\;+\;2ab\;+\;2bc\;+\;2ac}

\\\;\sf{\leadsto\;\;(a\;+\;b)^{3}\;=\;a^{3}\;+\;b^{3}\;+\;3ab(a\;+\;b)}

\\\;\sf{\leadsto\;\;(a\;-\;b)^{3}\;=\;a^{3}\;-\;b^{3}\;-\;3ab(a\;-\;b)}

\\\;\sf{\leadsto\;\;(a\;-\;b\;-\;c)^{2}\;=\;a^{2}\;+\;b^{2}\;+\;c^{2}\;-\;2ab\;+\;2bc\;-\;2ac}

\\\;\sf{\leadsto\;\;(a\;-\;b\;+\;c)^{2}\;=\;a^{2}\;+\;b^{2}\;+\;c^{2}\;-\;2ab\;-\;2bc\;+\;2ac}

\\\;\sf{\leadsto\;\;a^{3}\;+\;b^{3}\;=\;(a\;+\;b)^{3}\;-\;3ab(a\;+\;b)}

\\\;\sf{\leadsto\;\;a^{3}\;-\;b^{3}\;=\;(a\;-\;b)^{3}\;-\;3ab(a\;-\;b)}

Similar questions