Math, asked by lucky1638, 3 months ago

answer this!!!!!please........​

Attachments:

Answers

Answered by MrDRUG
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\bigg( \bigg( \frac{2}{3}  \bigg) ^{2}  \bigg)^{3}  \times   \bigg(\frac{2}{3} \bigg)^{ - 4}  \times  {3}^{ - 1}  \times  \frac{1}{6} =\frac{2}{81}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline{\bold{Given:}}} \\  \tt:  \implies  \bigg[\bigg( \frac{2}{3}  \bigg) ^{2}  \bigg]^{3}  \times  \bigg( \frac{2}{3} \bigg)^{ - 4}  \times  {3}^{ - 1}  \times  \frac{1}{6} \\  \\  \red{\underline{\bold{To \: Find:}}} \\  \tt:  \implies  \bigg[ \bigg( \frac{2}{3}  \bigg) ^{2}  \bigg]^{3}  \times   \bigg(\frac{2}{3} \bigg)^{ - 4}  \times  {3}^{ - 1}  \times  \frac{1}{6} =?

According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies\bigg( \bigg( \frac{2}{3}  \bigg) ^{2}  \bigg)^{3}  \times   \bigg(\frac{2}{3} \bigg)^{ - 4}  \times  {3}^{ - 1}  \times  \frac{1}{6} \\  \\  \tt \circ \: ( {x}^{m} )^{n}  =  {x}^{mn}  \\  \\ \tt:  \implies   \bigg(\frac{2}{3}  \bigg)^{2 \times 3}  \times   \bigg(\frac{2}{3}  \bigg) ^{ - 4}  \times  \frac{1}{3}  \times  \frac{1}{6}  \\  \\ \tt:  \implies \bigg(\frac{2}{3}  \bigg)^{6}  \times   \bigg(\frac{2}{3}  \bigg) ^{ - 4}  \times  \frac{1}{3}  \times   \frac{1}{2 \times 3}  \\  \\  \tt:  \implies   \frac{ {2}^{ 6}  \times 2 {}^{ - 4} }{ {3}^{6} \times  {3}^{ - 4} \times 3^{2}   \times  {2} }  \\  \\ \tt:  \implies  \frac{2^{6  - 4 - 1} }{ {3}^{6 - 4 + 2} }  \\  \\ \tt:  \implies  \frac{2}{ {3}^{4} } \\  \\  \green{\tt:  \implies  \frac{2}{81} } \\  \\  \tt  \green{\therefore \bigg[\bigg( \frac{2}{3}  \bigg) ^{2}  \bigg]^{3}  \times   \bigg(\frac{2}{3} \bigg)^{ - 4}  \times  {3}^{ - 1}  \times  \frac{1}{6} = \frac{2}{81} }

Answered by Anonymous
0

\huge\bf\fbox\red{Answer:-}

\begin{gathered} \bold{We \: know \: that} \\ \tt: \implies\bigg( \bigg( \frac{2}{3} \bigg) ^{2} \bigg)^{3} \times \bigg(\frac{2}{3} \bigg)^{ - 4} \times {3}^{ - 1} \times \frac{1}{6} \\ \\ \tt \circ \: ( {x}^{m} )^{n} = {x}^{mn} \\ \\ \tt: \implies \bigg(\frac{2}{3} \bigg)^{2 \times 3} \times \bigg(\frac{2}{3} \bigg) ^{ - 4} \times \frac{1}{3} \times \frac{1}{6} \\ \\ \tt: \implies \bigg(\frac{2}{3} \bigg)^{6} \times \bigg(\frac{2}{3} \bigg) ^{ - 4} \times \frac{1}{3} \times \frac{1}{2 \times 3} \\ \\ \tt: \implies \frac{ {2}^{ 6} \times 2 {}^{ - 4} }{ {3}^{6} \times {3}^{ - 4} \times 3^{2} \times {2} } \\ \\ \tt: \implies \frac{2^{6 - 4 - 1} }{ {3}^{6 - 4 + 2} } \\ \\ \tt: \implies \frac{2}{ {3}^{4} } \\ \\ \pink{\tt: \implies \frac{2}{81} } \\ \\ \tt \pink{\therefore \bigg[\bigg( \frac{2}{3} \bigg) ^{2} \bigg]^{3} \times \bigg(\frac{2}{3} \bigg)^{ - 4} \times {3}^{ - 1} \times \frac{1}{6} = \frac{2}{81} }\end{gathered}

Similar questions