Physics, asked by Cherry28831, 10 months ago

Answer this please....
The second pic is the ans for the first question.

Attachments:

Answers

Answered by Anonymous
124

Question :

Integrate

 \sf \int  \dfrac{4t}{ \sqrt{3t {}^{2}  - 7} } dt

Theory :

•Method of integration

Integration by substitution :

The given integral  \int f(x)dx can be transformed into another by changing the independent variable x to t by substituting x = g(t)

Solution :

 \bf \int \dfrac{4t}{ \sqrt{3t {}^{2} - 1 } } dt

Let  \sf 3t {}^{2}  - 1 = p

 \implies  \sf\frac{dp}{dt}  = 6t

 \sf \implies6t dt = dp

Put this value in Integration, then :

 \sf \int \dfrac{4t}{ \sqrt{3t {}^{2} - 1 }  } dt =   \int \dfrac{4t}{ \sqrt{p} }   \times \dfrac{dp}{6}

 \sf =  \dfrac{4}{6}  \int \dfrac{dp}{p {}^{ \frac{1}{2} } }

 \sf =  \dfrac{4}{6}  \int p {}^{ \frac{ - 1}{2} }  dp

 \sf =  \dfrac{4}{6} ( \dfrac{p {}^{ \frac{ - 1}{2} + 1 } }{ \frac{ - 1}{2} + 1 } )+c

 \sf =  \dfrac{4}{6} \times   \dfrac{ \sqrt{p} }{ \frac{1}{2} }+c

  \sf =  \dfrac{8}{6}  \sqrt{p}+c

 \sf =  \dfrac{4}{3} \sqrt{3t {}^{2} - 7 } +c

it is the required solution!

Similar questions