answer this please urgent
Attachments:
Answers
Answered by
0
Step-by-step explanation:
LHS sin⁶+cis⁶+3sin²cos²
(sin²)³+(cos²)³++3sin²cos²×1
(sin²)³+(cos²)³++3sin²cos²×(sin²+cos²)
(sin²+cos²)³
1³
1
LHS=RHS
#666
Answered by
1
Step-by-step explanation:
LHS : sin⁶θ + cos⁶θ + 3sin²θcos²θ
=> (sin²θ)³ + (cos²θ)³ + 3sin²θcos²θ(sin²θ + cos²θ)
=> (sin²θ + cos²θ)³ [ sin²θ + cos²θ = 1 ]
=> (1)³
=> 1
RHS : 1
=> LHS = RHS
HENCE PROVED
Similar questions