Math, asked by monusteelfurniture58, 1 year ago

answer this polynomial ​

Attachments:

Answers

Answered by GUYINSANE
1

let \: p(x) be \: the \: given \: quadratic \: polynomial \\ then \: p(x) = a {x}^{2} + bx + c \\ since \:  \alpha  \: and \:  \beta  \: are \: the \: zeros \: of \: p(x) \\ therefore \:   \alpha  \: and \:  \beta  \: are \: the \: roots \: of \: quaratic \:equation \: a {x}^{2}  + bx + c = 0 \\ which\: means  \:  \alpha  +  \beta  =   - \frac{ b}{a} \: (equation \: 1)  \\ and \:  \alpha  \beta  \:  =  \frac{c}{a}  \: (equation \: 2) \\ now \: from \: question \\ ( { \alpha }^{ - 1}  +  \frac{1}{{ \alpha }^{ - 1}} )( {  \beta }^{ - 1}  +  \frac{1}{{  \beta  }^{ - 1}} ) = ( \frac{1}{ \alpha }  +  \alpha )( \frac{1}{ \beta }  +   \beta ) \\  =  \frac{1 +   { \alpha }^{2} }{ \alpha }  \times  \frac{1 +   { \beta }^{2} }{ \beta }  \\  =  \frac{ { (\alpha }^{2}  + 1)( { \beta }^{2}  + 1)}{ \alpha  \beta }  \\   =  \frac{ { \alpha }^{2} { \beta }^{2}  +  { \alpha }^{2}   +  { \beta }^{2}  + 1}{ \alpha  \beta }  \\  =  \frac{{( \alpha  \beta )}^{2}  +  {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta  + 1 }{ \alpha  \beta }  \\   =  \frac{ \frac{ {c}^{2} }{ {a}^{2} }  + ( -  {\frac{b}{a} )}^{2}  -  \frac{2c}{a}  + 1}{ \frac{c}{a} }  \: (from \: equation \: 1 \: and \: 2) \\ =  \frac{a}{ c}  \times ( \frac{ {c}^{2} }{ {a}^{2}  }  +  \frac{ {b}^{2} }{ {a}^{2} }  -  \frac{2c}{a}  + 1) \\  =  \frac{a}{c}  \times ( \frac{ {b}^{2} +  {c}^{2}  }{ {a}^{2} }  -  \frac{2c}{a}  + 1) \\  =  \frac{a( {b}^{2}  +  {c}^{2} )}{ {a}^{2}c }  - 2 +  \frac{a}{c}  \\  =  \frac{ {b}^{2} +  {c}^{2}  }{ac}    +  \frac{ - 2c + a}{c}  \\  =  \frac{1}{c} ( \frac{ {b}^{2} +  {c}^{2}  }{a}  + ( - 2c  +  a)) \\  =  \frac{1}{c} ( \frac{ {b}^{2} +  {c}^{2}    +  a( - 2c  + a)}{a} ) \\  =  \frac{1}{c} ( \frac{ {b}^{2} +  {c}^{2}   - 2ac  +   {a}^{2} }{a} ) \\  =  \frac{   {a}^{2}   +    {c}^{2}   - 2ca +  {b}^{2}  }{ac}  \\  =  \frac{ {(a - c)}^{2} +  {b}^{2}  }{ac}

Similar questions