Answer this..... prove using multiple angle formula...........
Answers
✒
cotA/2-tanA/2
=>(cosA/2 ÷ sin A/2) - (sinA/2 ÷ CosA/2)
=> (cos²A/2-sin²A/2)/sinA/2*cosA/2
⭐ We, know that cos²x-sin²x=cos2x
=> cos2(A/2)/ sinA/2*cosA/2
Multiplying and dividing by 2
=>cosA / sinA/2 ×cosA/2 × 2/2
=>2cosA/2 sinA/2×cosA/2
⭐ We know that sin2x=sinx × cosx
So,
=> 2cosA/sinA {cosa/sina=cota}
=> 2cotA
Hence, cotA/2 - tanA/2 = 2cotA
Proved ✔✔✔✔
____________________________
Question
Show that:-
- cot A/2 - tan A/2 = 2 cot A
Prove
Take L.H.S.
==> cot A/2 - tan A/2
[ ★ cot x = cos x /sin x
★ tan x = sin x /cos x ]
==> (cos A/2)/(sin A/2) - (sin A/2)/(cos A/2)
==> (cos ² A/2 - sin ² A/2 )/(cos A/2). (sin A/2)
[ ★ cos ² x - sin ² x = cos 2x
★ 2.sin x . cos x = sin 2x ]
So,
==> 2*(cos 2A/2)/(sin 2A/2)
==> 2 * cos A / sin A
[ ★ cos x/sin x = cot x ]
==> 2. cot A
= R.H.S.
That's proved.
_________________________
Some Important Formula
★ Cos 2x = cos ² x - sin ² x
= 1 - 2 sin ² x
= 2 cos ² x - 1
= ( 1 - tan ² x )/(1 + tan ² x)
★ Sin 2x = 2 Sin x Cos x
_________________________