Physics, asked by Anonymous, 7 months ago

answer this qsn.....???​

Attachments:

Answers

Answered by prince5132
12

ANSWER :-

 \implies \bf \: (b) \:  \dfrac{F}{2m}  \dfrac{x}{ \sqrt{a ^{2} - x ^{2}  } }

TO FIND :-

 \implies \bf \: The \: \: acceleration \: .

SOLUTION :-

➵ Let the tension in each string be T. Hence the net force on the 'P'. should be zero, (m = 0).

 \to \bf \: F \:  = m \times a \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \big\{ \because \: m \:  = 0 \big \} \\  \\ \to \boxed{ \red{ \bf \: F  = 0}}

 \therefore \bf \: \: F  \:  = 2 \: T \cos \:  \{ 90 \: -  \theta \} \\  \\  \to \bf \: F  \:  = 2 \: T \:  \sin \theta \\  \\  \to \boxed{ \red{ \bf \: T \:  =  \dfrac{F}{2 \:  \sin \theta } }}

➵ Now, come in mass (m).

 \to \bf \:  \cos \theta \:  = \dfrac{x}{a}  \\  \\  \to \bf \:  \sec \theta \:  =  \dfrac{a}{x}  \\  \\  \because \bf \:  \sec ^{2}\theta \:   -  \tan ^{2}  \theta \:  = 1 \\  \\  \to \bf \:  \tan \theta \:  =  \sqrt{ \sec ^{2} \theta - 1 }  \\  \\  \to \bf \:  \tan \theta \:  =  \sqrt{ \dfrac{a ^{2} }{x ^{2} }  - 1}  \\  \\  \to  \boxed{ \red{ \bf \:  \dfrac{1}{ \tan \theta }  =  \dfrac{x}{ \sqrt{a ^{2}  - x ^{2} } } }}

 \to \bf \: Now  \: Acceleration  =  \dfrac{T \:  \cos \theta}{m}  \\ \\ \to \bf \:  \dfrac{F}{2 \:  \sin \theta}  \: . \dfrac{cos \theta}{m}  \\  \\  \to \bf \dfrac{F}{2 \:  \tan \theta \: .m }  \\  \\  \to  \boxed{ \red{\bf \:  \dfrac{F}{2m} \:  \dfrac{x}{  \sqrt{a ^{2}  - x ^{2} }  }  }}

Hence Option (b) is correct.

Attachments:

BloomingBud: great explanation dear
Anonymous: Great keep it up
Answered by bsidhardhareddy
0

Answer:

daani answer b aah ne ? ....

Explanation:

answer cheppu

Similar questions