Math, asked by muneer786ahmedpbcekw, 11 months ago

answer this question

Attachments:

Answers

Answered by ItSdHrUvSiNgH
13

Step-by-step explanation:

 \huge\red{\underline{\underline{\bf Question:-}}}

  \\  \\  \int  \frac{ {x}^{3} }{x + 1}

 \huge\red{\underline{\underline{\bf Answer:-}}}

 \\  \\   \implies  \int  \frac{ {x}^{3} }{x + 1}dx  \\  \\ \implies \int  \frac{ {x}^{3}  + 1  -  1 }{x + 1}dx  \\  \\  \implies \int  \frac{ {x}^{3}  + 1}{x + 1} dx -  \int  \frac{1}{x + 1} dx \\  \\  \implies  \int \frac{ \cancel{(x + 1)}( {x}^{2} - x + 1) }{ \cancel{x + 1}} dx -  \int  \frac{1}{x + 1} dx \\  \\  \implies \int  {x}^{2}  \: dx -  \int x  \: dx +  \int dx - \int  \frac{1}{x + 1} dx  \\  \\  \implies  \frac{ {x}^{3} }{3}  - \frac{ {x}^{2} }{2}  + x -  ln(x + 1)  +C \\  \\  \\ so \: \:  your \:  \: answer \:  \: is  \implies \\  \\  \huge \boxed{ \leadsto \frac{ {x}^{3} }{3}  - \frac{ {x}^{2} }{2}  + x -  ln(x + 1)  +C }

Similar questions