Math, asked by anubhaws259, 8 months ago

answer this question ​

Attachments:

Answers

Answered by Vyomsingh
27

 \frac{3 -  {x}^{2} }{8 +  {x}^{2} }  =   \frac{ - 3}{4}  \\

\frac{3 -  {x}^{2} }{8 +  {x}^{2} }   +  \frac{ 3}{4}  = 0\\ \large\bf\red \star\green{ for \: positive \: soution} \\

\frac{3 -  {x}^{2} }{8 +  {x}^{2} }   +  \frac{ 3}{4}   ≥  0 \\

\frac{12 -  {4x}^{2} + 24 +  {3x}^{2}  }{(8 +  {x}^{2} )(4)}  \geq  0 \\

\frac{36 -  {x}^{2} }{32 +  {4x}^{2} }  \geq 0 \\ if \:taken \: 36 -  {x}^{2}  \geq 0\:..........equ (1)\\ then \\ x \leq 6 \\\large\bf\green{\star from \: given \: option} \\   \red \star \: x  = 6 \\   \bf \purple {answer}

\bf\orange{Note}

\bf{We\:count\:0\:as\:positive\:integer}

therefore,

36-x^2=0

36-6^2=0

{36-36=0}

which is true,

hence.......Prooved.

Answered by ItzMysticalBoy
63

Question :-

★Positive value of the variable for which the given is satisfied \sf{\dfrac{3-x^2}{8+x^2}=\dfrac{-3}{4}.}

○ 6

○7

○None of these

Given :

  • \sf{\dfrac{3-x^2}{8+x^2}=\dfrac{-3}{4}}

To Find :

  • Positive value of the variable.

Solution :-

:\implies{\sf{\dfrac{3-x^2}{8+x^2}=\dfrac{-3}{4}}} \\  \\  : \implies{\sf{ 4(3-x^2) =  - 3(8+x^2)}} \\  \\: \implies{\sf{ 12-4x^2 =  - 24 - 3x^2}} \\  \\: \implies{\sf{ 12 + 24=   - 3x^2+ 4x^2 }} \\  \\: \implies{\sf{36 = x ^2  }} \\  \\ : \implies{\sf{ \sqrt{36} = x }} \\  \\ : \implies{\sf{6 = x }} \\  \\ :\implies{ \boxed{\tt{x = 6 }}}

\underline {\bf{\therefore{Positive \: value \: of \: the\: variable \:is \:6.}}}

Verification :

We have ,

  • Positive value of the variable = 6
  • Given Equation :\sf{\dfrac{3-x^2}{8+x^2}=\dfrac{-3}{4}.}

Substituting the value of x :

 : \implies{\sf{\dfrac{3-6^2}{8+6^2}=\dfrac{-3}{4}}} \\ \\ : \implies{\sf{ \dfrac{3-36}{8+36}=\dfrac{-3}{4}}} \\  \\ :\implies{\sf{ \dfrac{-33}{44}=\dfrac{-3}{4}}} \\  \\ : \implies{\sf{ \dfrac{-3}{4}=\dfrac{-3}{4}}}\\ \\: \implies{\boxed{\tt{LHS = RHS}}}

\underline {\bf{\therefore{Verified.}}}

Similar questions