Math, asked by lasya12, 1 year ago

Answer this question!!

Attachments:

Answers

Answered by ridhya77677
6

 \frac{  { \cosec}^{2}a +  { \sec }^{2}a  }{ {cosec}^{2} a -  \ {sec}^{2}a }  =  \frac{1 +  {tan}^{2}a }{1 -  { tan }^{2} a}  \\ lhs.. \\  \frac{  { \cosec}^{2}a +  { \sec }^{2}a  }{ {cosec}^{2} a -  \ {sec}^{2}a }   \\  =  \frac{ \frac{1}{ {sin}^{2}a } +  \frac{1}{ {cos}^{2} a}}{ \frac{1}{ {sin}^{2}a } -  \frac{1}{ {cos}^{2} a}  } \\  =  \frac{ { \cos }^{2} a +  {sin}^{2} a}{ {sin}^{2}a \times  {cos}^{2}  a}  \div  \frac{ {cos}^{2} a -  {sin}^{2} a}{ {sin}^{2} a  \times  {cos}^{2} a}  \\  =  \frac{1}{ {cos}^{2}a -  {sin}^{2}a  }  \:  \:  \: ({{sin}^{2} a  \times  {cos}^{2} a}  \: is \: cancelled \: and \: { {cos}^{2} a  +  {sin}^{2} a} \:  = 1)
rhs.. \\  \frac{1 +  { \tan}^{2}a }{1 -  { \tan }^{2}a}  \\  =  \frac{1 +  \frac{ {sin}^{2}a }{ {cos}^{2} a} }{1  -  \frac{ {sin}^{2}a }{ {cos}^{2} a}} \\  =  \frac{ {cos}^{2}a +  {sin}^{2} a }{ {cos}^{2} a}  \div  \frac{ {cos}^{2}a  -  {sin}^{2} a }{ {cos}^{2} a}  \\  =  \frac{1}{ {cos}^{2} a}  \times  \frac{ {cos}^{2} a}{ {cos}^{2} a -  {sin}^{2}a }  \:  \:  \:  \: ( {cos}^{2} a \: is \: cancelled \: ) \\  =  \frac{1}{ {cos}^{2}a -  {sin}^{2}  a}
Hence ,, LHS = RHS
-------------------------------------------------------------
HOPE THIS WILL HELP YOU DEAR.

ridhya77677: plz mark brainliest
ridhya77677: thanku
Similar questions