Math, asked by venkatmahesh06, 6 months ago

answer this question.......​

Attachments:

Answers

Answered by EnchantedBoy
14

\bigstar\huge\bf\underline{\underline{\red{Answer:-}}}

\bf (i)x \ - \frac{1}{x} \ = \ 3

\bf\implies x^{2} \  - \ 3x \ -1 \ =0

\bf \implies x = \frac{-b \ ± \ \sqrt{b^{2} - 4ac}}{2a}

\bf\implies a \ = \ 1, \ b \ = \ -3, \ c \ = \ -1

\bf\implies x = \frac{3 \ ± \ \sqrt{9+4}}{2}

\bf\boxed{\underline{\purple{x \ = \ \frac{3± \ \sqrt{13}}{2}}}}

\bf (ii) \bf \frac{1}{(x+4)} \ - \ \frac{1}{(x-7)} \ = \ \frac{11}{30}

\bf\implies \frac{(x-7-x-4)}{(x+4)(x-7)} \ = \ \frac{11}{30}

\bf\implies \frac{-11}{(x+4)(x-7)} \ = \ \frac{11}{30}

\bf\implies -30 \ = \ x^{2} \ - \ 3x \ - \ 28

\bf\implies x^{2} \ - \ 3x \ + \ 2 \ = 0

\bf\implies x^{2} \ - \ 2x \ - \ x \ + \ 2 \ = \ 0

\bf\implies x(x-2)-1(x-2)=0

\bf\implies (x-2)(x-1) \ = 0

\implies\boxed{\underline{\blue{x \ = 1, 2}}}

Answered by ItzPsychoElegant
15

Step-by-step explanation:

hope its help full for u

Attachments:
Similar questions