Math, asked by amitk888226gmailcom, 6 months ago

answer this question ​

Attachments:

Answers

Answered by Nksystem
2

This is the answer in your question Hope you like this mark me as brainliest

Attachments:
Answered by vipashyana1
2

Answer:

 \sqrt{ \frac{1 + sin \: a }{1  -  sin \: a} }  =  \sec \: a +  \tan \: a

 \sqrt{ \frac{1 +  sin \: a }{1 -  sin \: a } }  \times  \sqrt{ \frac{1 +  sin \: a }{1  +   sin \: a } } =  \sec \: a +  \tan \: a

 \sqrt{ \frac{ {(1  + sin \: a) }^{2} }{ {(1)}^{2} -  {( sin \: a) }^{2}  } }  = \sec \: a + \tan \: a

 \sqrt{ \frac{ {(1  +   sin \: a) }^{2} }{1 -  {sin}^{2}a } }  =  \sec \: a +  \tan \: a

 \sqrt{ \frac{ {(1  +  sin \: a)}^{2}  }{  { cos }^{2} \: a  } }  =  \sec \: a +  \tan \: a

 \frac{1 +  sin \: a }{ cos \: a }  =  \sec \: a +  \tan \: a

 \frac{1}{ cos \: a}  +   \frac{ sin \: a }{ cos \: a }  =  \sec \:   +  \tan \: a

sec\:a+tan\:a=sec\:a+tan \: a

L.H.S.=R.H.S

hence proved

Similar questions