Math, asked by shekharkumaryadav763, 6 months ago

answer this question ⁉️​

Attachments:

Answers

Answered by kundanconcepts800
2

Answer:

(b) 116 is correct option

Step-by-step explanation:

a^2 + b^2 = (a + b)^2 - 2ab

= (12)^2 - 2×14

= 144 - 28 = 116

Answered by Anonymous
16

Given :

  • (a+b)= 12
  • ab = 14

To Find :

The value of (a²+b²)

Solution :

We have to Find the value of a²+b²

We know that

\sf{(a+b)^2=a^2+b^2+2ab}

Now , Put the given values

\sf\implies\:(12)^2=a^2+b^2+2(14)

\sf\implies\:144=a^2+b^2+28

\sf\implies\:144-28=a^2+b^2

\sf\implies\:a^2+b^2=116

Therefore, the value of a²+b² is 116

Correct option b ) 116

____________

Algeberaic Indentities:

1)\sf{(a+b)^2=a^2+b^2+2ab}

2)\sf{(a-b)^2=a^2+b^2-2ab}

3)\sf{(a^2-b^2)=(a+b)(a-b)}

4)\sf{(a+b+c)^2={a}^{2}+{b}^{2}+{c}^{2}+2ab+2bc+2ca}

5)\sf{(a+b)^3=a^3+b^3+3ab(a+b)}

Similar questions