Math, asked by aaseshan123, 2 months ago

answer this question

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int \limits_{0}^{ \frac{\pi}{2} }  \int \limits_{0}^{ \cos( \theta) }  {r}^{2} drd \theta \\

 \int \limits_{0}^{ \frac{\pi}{2} } [ \frac{ {r}^{3} }{3} ]^{ \cos(\theta) } _{0}  d \theta \\

 \int \limits_{0}^{ \frac{\pi}{2} } \frac{ { \cos}^{3}( \theta) }{3}  d \theta \\

 =  \frac{1}{3}  \int \limits_{0}^{ \frac{\pi}{2} }  (1 -  \sin^{2} ( \theta)) \cos( \theta)  d \theta \\

 Let \:sin(\theta)=t

 \implies\cos(\theta)d\theta=dt

 =  \frac{1}{3}  \int \limits_{0}^{ 1 }  (1 -  {t}^{2} )  dt \\

 =  \frac{1}{3} [t -  \frac{ {t}^{3} }{3} ]^{1}_{0}  \\

 =  \frac{1}{3} (1 -  \frac{1}{3} )

 =  \frac{1}{3}  \times  \frac{2}{3}   \\

 =  \frac{2}{9}  \\

Similar questions