Math, asked by dishap663, 3 months ago

answer this question...​

Attachments:

Answers

Answered by Anonymous
55

\large\sf\underline{Given\::}

  • \sf\:\frac{1}{4-p} - \frac{1}{2+p}=\frac{1}{4}

\large\sf\underline{To\:find\::}

  • Value of p = ?

\large\sf\underline{Solution\::}

\sf\:\frac{1}{4-p} - \frac{1}{2+p}=\frac{1}{4}

  • LCM of (4 - p) and (2 + p) = (4 - p) (2 + p)

\sf\implies\:\frac{[1 \times (2+p)] -[1 \times (4-p)]  }{(4-p)(2+p)}=\frac{1}{4}

  • Multiplying the terms in numerator and denominator in LHS

\sf\implies\:\frac{(2+p) - (4-p)}{4(2+p)-p(2+p) }=\frac{1}{4}

\sf\implies\:\frac{(2+p) - (4-p)}{8+4p-2p-p^{2}}=\frac{1}{4}

  • Opening the brackets of numerator in LHS

\sf\implies\:\frac{2+p - 4+p}{8+4p-2p-p^{2}}=\frac{1}{4}

  • Arranging like terms and doing simple calculations over them

\sf\implies\:\frac{2- 4+p+p}{8+4p-2p-p^{2}}=\frac{1}{4}

\sf\implies\:\frac{- 2+2p}{8+2p-p^{2}}=\frac{1}{4}

  • Now cross multiplying

\sf\implies\:8+2p-p^{2}=4(-2+2p)

  • Multiplying the terms in RHS

\sf\implies\:8+2p-p^{2}=-8+8p

  • Arranging the terms in LHS

\sf\implies\:-p^{2}+2p+8=-8+8p

  • Transposing + 8p to LHS it becomes - 8p

\sf\implies\:-p^{2}+2p-8p+8=-8

\sf\implies\:-p^{2}-6p+8=-8

  • Transposing - 8 to LHS it becomes + 8

\sf\implies\:-p^{2}-6p+8+8=0

\sf\implies\:-p^{2}-6p+16=0

  • Taking - ve sign as common

\sf\implies\:-(p^{2}+6p-16)=0

\tt\blue{\implies\:p^{2}+6p-16=0}

  • Now we have formed a quadratic equation. Let us solve by using factorisation method

\sf\implies\:p^{2}+6p-16=0

+6k in this expression can be splitted as (8p) - (2p) since :

  • 6p = ( 8 - 2 ) p

  • 16 = 8 × 2

This process of splitting the middle term is also known as middle term breaking .‎

\sf\implies\:p^{2}+(8-2)p-16=0

  • Multiplying the terms

\sf\implies\:p^{2}+8p-2p-16=0

  • Taking p as common from first two terms and -2 from second two terms

\sf\implies\:p(p+8)-2(p+8)=0

  • Taking ( p + 8 ) common from whole expression

\sf\implies\:(p+8)(p-2)=0

______________________

Case 1 :

\sf\longrightarrow\:(p+8)=\:0

\small{\underline{\boxed{\mathrm\red{\longrightarrow\:p=\:-8}}}}

Case 2 :

\sf\longrightarrow\:(p-2)=\:0

\small{\underline{\boxed{\mathrm\red{\longrightarrow\:p=\:2}}}}

______________________‎

!! Hope it helps !!

Similar questions