Math, asked by Anonymous, 1 month ago



Answer this Question !! ​

Attachments:

Answers

Answered by suhail2070
3

Answer:

 \frac{1}{3}

Step-by-step explanation:

 \frac{m}{2n}  =  \frac{3}{4}  \\  \\  \frac{3m}{2n}  =  \frac{3}{4}  \\  \\  \frac{3m}{n}  =  \frac{6}{4}  \\  \\  \\  \frac{3m  - n}{n}  =  \frac{6 - 4}{4}  \\  \\  \frac{3m - n}{n}  =  \frac{2}{4}  \\  \\  \frac{3m - n}{n}  =  \frac{1}{2}   \:  \:  \:  \:  \: equation \:  \:  \:  \: (i) \\  \\  \\  \\  \\  \\  \frac{m}{2n}  =  \frac{3}{4}  \\  \\  \\  \frac{m}{n}  =  \frac{6}{4}  \\  \\  \frac{m}{3n}  =  \frac{6}{12}  \\  \\   \frac{m}{3n}  =  \frac{1}{2}  \\  \\  \\  \frac{m + 3n}{3n}  =  \frac{1 + 2}{2}  \\  \\  \frac{m + 3n}{3n}  =  \frac{3}{2}  \\  \\  \\  \frac{m + 3n}{3n}  =  \frac{3}{2}   \:  \:  \:  \:  \:  \: equation \:  \:  \:  \:  \:  \: (ii) \\  \\  \\  \\ from \: (i) \:  \:  \: and \:  \:  \:  \: (ii) \\  \\  \\  \\  \frac{3m - 2n}{m + 3n}  =  \frac{1}{2}  \times  \frac{2}{3}  \\  \\  \\  \frac{3m - 2n}{m + 3n}  =  \frac{ \frac{1}{3} }{1}  =  \frac{1}{3}

Answered by Tomboyish44
48

Answer:

\sf \dashrightarrow \ \dfrac{3m - n}{m + 3n} = \dfrac{7}{9}

Step-by-step explanation:

We've been given that;

\sf \dashrightarrow \ \dfrac{m}{2n} = \dfrac{3}{4}

On transposing 2n we get;

\sf \dashrightarrow \ \dfrac{m}{1} = \dfrac{3 \times 2n}{4}

On dividing 2n and 4 we get;

\sf \dashrightarrow \ \dfrac{m}{1} = \dfrac{3 \times n}{2}

\sf \dashrightarrow \ m = \dfrac{3n}{2}

On substituting this value in the fraction given in the question we get;

\sf \dashrightarrow \ \dfrac{3m - n}{m + 3n}

\sf \dashrightarrow \ \dfrac{3\left(\dfrac{3n}{2}\right)  - n}{\left(\dfrac{3n}{2}\right) + 3n}

On taking LCM we get;

\sf \dashrightarrow \ \dfrac{\bigg(\dfrac{9n}{2} - n\bigg)}{\bigg(\dfrac{3n}{2} + 3n\bigg)}

\sf \dashrightarrow \ \dfrac{\bigg(\dfrac{9n - 2n}{2}\bigg)}{\bigg(\dfrac{3n + 6n}{2} \bigg)}

\sf \dashrightarrow \ \bigg(\dfrac{9n - 2n}{2}\bigg) \times \bigg(\dfrac{2}{3n + 6n} \bigg)

\sf \dashrightarrow \ \bigg(\dfrac{9n - 2n}{3n + 6n} \bigg)

\sf \dashrightarrow \ \bigg(\dfrac{7n}{9n} \bigg)

\sf \dashrightarrow \ \dfrac{7}{9}

Therefore;

\sf \dashrightarrow \ \boxed{\bold{\dfrac{3m - n}{m + 3n} = \dfrac{7}{9}}}

Hence solved.

Similar questions