Math, asked by rishavjaat71, 4 days ago

answer this question​

Attachments:

Answers

Answered by MathCracker
12

Question :-

Prove that :

  \rm{ \frac{ \tan  \theta}{1 -  \cot \theta} +  \frac{ \cot \theta }{1 -  \tan \theta}  = 1 +  \sec \theta \cosec \theta} \\

Solution :-

Here taking LHS.

We know that,

\rm:\longmapsto{ \cot \theta =  \frac{1}{ \tan \theta } \: or \:  \frac{ \cos \theta }{ \sin \theta }   } \\

on using this,

\rm:\longmapsto{ \frac{ \tan \theta }{1 -  \frac{1}{ \tan \theta} } +  \frac{ \frac{1}{ \tan \theta } }{1 -  \tan \theta }  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\\rm:\longmapsto{ \frac{ \tan \theta }{ \frac{ \tan \theta - 1 }{  \tan \theta} }  +  \frac{1}{ \tan \theta(1 -  \tan \theta )} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\\rm:\longmapsto{ \frac{ \tan {}^{2}   \theta}{ \tan \theta - 1} +  \frac{1}{ \tan \theta(1 -  \tan  \theta ) }  }  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{ \frac{ \tan {}^{2} \theta  }{ \tan \theta - 1 }  -  \frac{1 }{ \tan \theta(1 -  \tan \theta ) } }  \:  \:  \:  \:  \:  \:  \: \\  \\ \rm:\longmapsto{ \frac{ \tan {}^{3} \theta - 1  }{ \tan \theta(1 -  \tan \theta ) } } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{ \frac{  \cancel{(\tan \theta - 1)}( \tan {}^{2}  \theta +  \tan \theta + 1)}{ \tan \theta \cancel{( \tan \theta - 1 ) }} } \\  \\ \rm:\longmapsto{ \frac{ \tan {}^{2}   \theta +  \tan \theta + 1 }{ \tan \theta} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Also we can write

\rm:\longmapsto{ \frac{ \tan {}^{2}  \theta }{ \tan \theta }  +   \cancel\frac{ \tan  \theta}{ \tan \theta} +  \frac{1}{ \tan \theta}   }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\\  \\ \rm:\longmapsto{ \tan \theta + 1 +  \cot \theta \: \:  \:  \bigg \{ \because \frac{1}{ \tan \theta}   =  \cot \theta \bigg \}}

We know that,

\rm:\longmapsto{ \tan \theta =  \frac{ \sin \theta}{ \cos \theta} } \\  \\ \rm:\longmapsto{ \cot \theta =  \frac{ \cos \theta}{ \sin \theta} }

On using this,

\rm:\longmapsto{1 +  \frac{ \sin \theta}{ \cos \theta} +  \frac{ \cos \theta}{ \sin \theta}  }  \:  \:  \: \\  \\ \rm:\longmapsto{1 +  \frac{ \sin {}^{2} \theta  +  \cos {}^{2} \theta }{ \sin \theta \cos \theta} }

We know that,

\rm:\longmapsto{ \sin {}^{2}  \theta +  \cos {}^{2} \theta = 1 }

On using this,

\rm:\longmapsto{1 +  \frac{1}{ \sin \theta \cos \theta} } \\

Also we can write,

\rm:\longmapsto{1 +  \frac{1}{ \sin \theta } \times  \frac{1}{ \cos \theta}  } \\

We know that,

\rm:\longmapsto{ \frac{1}{ \sin \theta} =  \cosec \theta } \\  \\ \rm:\longmapsto{ \frac{1}{ \cos \theta} =  \sec \theta } \:  \:

Hence,

\rm:\longmapsto{ 1 +  \sec \theta \cosec \theta}

LHS = RHS

  • Hence Proved!

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions