Math, asked by Ayaan2725, 17 days ago

answer this question​

Attachments:

Answers

Answered by MathCracker
13

Question :-

 \rm{ \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  = a + b \sqrt{2} } \\

Answer :-

  • a = 13
  • b = 6

Step by step explanation :-

Here, first we rationalize the denominator,

\rm:\longmapsto{ \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} } } \\   \\ \rm:\longmapsto{ \frac{(3 +  \sqrt{2})(3 +  \sqrt{2} )}{(3  -  \sqrt{2} )(3 +  \sqrt{2} )} } \\

Using,

  • (a+b)² = a² + 2ab + b²
  • (a-b) (a+b) = a² - b²

\rm:\longmapsto{ \frac{(3) {}^{2}  + 2(3)( \sqrt{2} ) + ( \sqrt{2} ) {}^{2} }{(3) {}^{2}  - ( \sqrt{2}) {}^{2}  } } \\  \\ \rm:\longmapsto{ \frac{9 + 6 \sqrt{2}  + 4}{3 - 2} } \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \rm:\longmapsto \red{ \frac{13 + 6 \sqrt{2} }{1} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Taking RHS and LHS

\rm:\longmapsto{13 + 6 \sqrt{2}  = a + b \sqrt{2} }

Comparing both sides,

{\rm:\longmapsto \red{a = 13}} \\  \\ \rm:\longmapsto \red{b = 6} \:  \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions