answer this question
Answers
Step-by-step explanation:
Solution
a=
3q+
r
q>
0
0<
r<
3
a=
3q, 3q+
1,3q+
2
let a be any positive integer and
b=
3,
3q
2
a=
a
(3q)
2
=
9q
2
=
3(3q
2
)
=
3p
p
=
3q
2
a=
a
2
3q+
(3q+
1
1)
2
=
9q
2
+
6q+
1
=
3(3q
2
+
2q)+
1
(where
p=
3q
2
+
2q
) 3q+ 2
a=
a 2 (3q+ 2)
2
=
9q
2
+12q+
4
=
3(q
2
+
4q+
1)+
1
=
3p+
1
(where
p=
3q
2
+
4q+
1
)
::
3p
or
3p+
1.
hope it will help you.