answer this question
Attachments:
Answers
Answered by
2
Answer:
C) −3abc
Step-by-step explanation:
Given = a+b+c = 0
So
a+b = −c
b+c = −a
c+a = −b
a^2(b+c)+b^2(c+a)+c^2(a+b)
Putting values in eq.
a^2(−a)+b^2(−b)+c^2(−c)
−a^3−b^3−c^3 = −(a3+b3+c3)
We knowthat
(a3+b3+c3)=(a+b+c)(a2+b2+c2+3abc)
−(a3+b3+c3) = (0)(0+3abc)
−(a3+b3+c3) = 3abc
so
a^2(b+c)+b^2(c+a)+c^2(a+b) = −3abc
HOPE IT HELPS
Answered by
0
Given a + b + c = 0
⇒ a3 + b3 + c3 = 3abc → (1)
Consider, (a2/bc) + (b2/ca) + (c2/ab)
= (a3 + b3 + c3)/abc
= 3abc/abc = 3 [From (1)]..
Similar questions
Math,
4 hours ago
Math,
4 hours ago
Social Sciences,
4 hours ago
Math,
7 hours ago
Social Sciences,
8 months ago
Math,
8 months ago
Math,
8 months ago