Math, asked by googleuser687, 1 year ago

answer this question

Attachments:

Answers

Answered by Anonymous
8
yoυr anѕwer !!

 = > \frac{7 + \sqrt{5} }{7 - \sqrt{5} } - \frac{7 - \sqrt{5} }{7 + \sqrt{5} } = a + 7b \sqrt{5} \\ \\ = > \frac{7 + \sqrt{5} }{7 - \sqrt{5} } \times \frac{7 + \sqrt{5} }{7 + \sqrt{5} } - \frac{7 - \sqrt{5} }{7 + \sqrt{5} } \times \frac{7 - \sqrt{5} }{7 - \sqrt{5} } = a + 7b \sqrt{5} \\ \\ = > \frac{ {(7 + \sqrt{5}) }^{2} }{ {(7)}^{2} - {( \sqrt{5} )}^{2} } - \frac{ {(7 - \sqrt{5}) }^{2} }{ {(7)}^{2} - {( \sqrt{5} )}^{2} } = a + 7b \sqrt{5} \\ \\ = > \frac{ {(7)}^{2} + {( \sqrt{5}) }^{2} + 2 \times 7 \times \sqrt{5} }{49 - 5} - \frac{ {(7)}^{2} + {( \sqrt{5} ) - 2 \times 7 \times \sqrt{5} }^{2} }{49 - 5} = a + 7b \sqrt{5} \\ \\ = > \frac{49 + 5 + 14 \sqrt{5} }{44} - \frac{(49 + 5 - 14 \sqrt{5} )}{44} = a + 7b \sqrt{5} \\ \\ = > \frac{54 + 14 \sqrt{5} }{44} - \frac{(54 - 14 \sqrt{5} )}{44} = a + 7b \sqrt{5} \\ \\ = > \frac{54 + 14 \sqrt{5} - 54 + 14 \sqrt{5} }{44} = a + 7b \sqrt{5} \\ \\ = > \frac{14 \sqrt{5} + 14 \sqrt{5} }{44} = a + 7b \sqrt{5} \\ \\ = > \frac{28 \sqrt{5} }{44} = a + 7b \sqrt{5} \\ \\

accordιng тo тнιѕ eqυaтιon:

a = 0

 = > \frac{28 \sqrt{5} }{44} = a + 7b \sqrt{5} \\ \\ = > \frac{28 \sqrt{5} }{44} = 0 + \frac{7 \times 4 \times \sqrt{5} }{44} \\ \\

нence, в = 4/44

тнanĸѕ !!

googleuser687: your answer is correct i will mark your ans as brainlist :)
googleuser687: thanks once again
Anonymous: wlcм dear!
googleuser687: hi beautiful 5225
googleuser687: 28√5/44 equals to 0+7x4x√5/44. . what to do? how the 4/44 came
Similar questions