Math, asked by sanwi, 1 year ago

answer this question...

Attachments:

Answers

Answered by siddhartharao77
3

(i)

Given Equation is 48 + 22x - x^2

⇒ -(x^2 - 22x - 48)

⇒ -(x^2 + 2x - 24x - 48)

⇒ -(x(x + 2) - 24(x + 2))

-(x - 24)(x + 2).


(ii)

Given Equation is 12x + 15 - 3x^2

⇒ -3(x^2 - 4x - 5)

⇒ -3(x^2 + x - 5x - 5)

⇒ -3(x(x + 1) - 5(x + 1))

-3(x - 5)(x + 1)



(iii)

Given Equation is 15x^4 + 3x^2 - 18

⇒ 3x^2 + 15x^4 - 18

⇒ 3(5x^4 + x^2 - 6)

⇒ 3(5x^4 + 6x^2 - 5x^2 - 6)

⇒ 3(x^2(5x^2 + 6) - 1(5x^2 + 6))

⇒ 3(x^2 - 1)(5x^2 + 6)

3(x + 1)(x - 1)(5x^2 + 6).



Hope it helps!


siddhartharao77: Thank you!
Answered by NishantMishra3
3
\huge\orange{\mathfrak{Bonjour!!}}

\green{\textbf{Solution:}}
\blue{============================}
1)
48 + 22x - {x}^{2} \\ \\-( {x}^{2} - 22 x- 48 )\\ \\ -({x}^{2} - 24x + 2x - 48 )\\ \\- (x + 2)(x - 24) \\

\blue{===========================}

2)
12x + 15 - 3 {x}^{2} \\ \\ -(3 {x}^{2} - 12x - 15 )\\ \\ -({x}^{2} - 4x - 5) \\ \\-( {x}^{2} - 5x + x - 5) \\ \\ -(x + 1)(x - 5)

\blue{===========================}

3)
15 {x}^{4} + 3 {x}^{2} - 18 \\ \\ 5 {x}^{4} + {x}^{2} - 6 \\ \\ 5{x}^{4} - 5 {x}^{2} + 6 {x}^{2} - 6 \\ \\ 5 {x}^{2} ( {x}^{2} - 1) + 6 {x}^{2} ( {x}^{2} - 1) \\ \\ (5 {x}^{2} + 6 {x}^{2} )( { x}^{2} - 1)
\blue{============================}

<marquee>

\huge\red{Nishant}
Similar questions