Math, asked by basantilyf, 10 months ago

answer this question as fast as possible​

Attachments:

Answers

Answered by shadowsabers03
4

Given,

\longrightarrow\sf{2^{n-1}+2^{n+1}=320}

We can take \sf{2^{n-1}} as common in LHS as follows:

\longrightarrow\sf{2^{n-1}+2^{n-1+2}=320}

\longrightarrow\sf{2^{n-1}+2^{n-1}\times2^2=320}

\longrightarrow\sf{2^{n-1}\left[1+2^2\right]=320}

\longrightarrow\sf{2^{n-1}\left[1+4\right]=320}

\longrightarrow\sf{2^{n-1}\times5=320}

\longrightarrow\sf{2^{n-1}=\dfrac{320}{5}}

\longrightarrow\sf{2^{n-1}=64}

Then,

\longrightarrow\sf{n-1=\log_264}

\longrightarrow\sf{n-1=6}

\longrightarrow\sf{\underline{\underline{n=7}}}

Hence 7 is the answer.

Similar questions