Answer this question ASAP !!
Attachments:
Answers
Answered by
1
Hey Buddy
Here's The Answer
-------------------------------------
We know , we can write
sec ø = 1/cos ø
Now
To Prove
(sec ø - 1)/(sec ø + 1) = [sin ø/1 + cos ø]^2
taking LHS
Using above Identity
(1/cos ø -1 ) / (1/cos ø + 1 )
Taking LCM
[(1 - cos ø)/cos ø]/ [(1 + cos ø)/cos ø]
(1 - cos ø)/(1 + cos ø)___(1)
By rationalising (1)
[(1 - cos ø)/(1 + cos ø)]×[((1 + cos ø)/(1 + cos ø)]
Now
(1-cos ø) × (1 + cos ø )
using identity a^2 - b^2 = (a-b)(a+b)
1 - cos^2 ø
sin^2 ø
Now solving lower part
(1 + cos ø)(1 + cos ø)
(1 + cos ø)^2
writing together
(sin^2 ø)/ (1 + cos ø)^2
now
[sin ø/1 + cos ø]^2
Hence Proved
Hope Helped
Peace ;)
Similar questions