Math, asked by SamuelCoursing, 10 months ago

Answer this question ...

@Maths aryabhatta
@ Moderators
@Maths teacher​

Attachments:

amitnrw: 14^2 - (22/7)(7)^2 = 42 is the area of one . 42 * 6 = 252

Answers

Answered by BrainlyConqueror0901
17

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:total\:shaded\:region=252\:cm^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Radius \: of \: circle = 7 \: cm \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Area \: of \: shaded \: region =?

• According to given question :

 \tt \circ \: Side \: of \: square = 14 \: cm \\  \\  \bold{As \: we \: know \: that}  \\  \tt:  \implies Area \: of \: one \: shaded \: region = Area \: of \: square - 4 \times  Area \: of \: quadrant \\  \\ \tt:  \implies Area \: of \: one \: shaded \: region =  {side}^{2}  - 4 \times  \frac{1}{4} \pi {r}^{2}  \\  \\ \tt:  \implies Area \: of \: one \: shaded \: region =  {14}^{2}  - \pi {7}^{2}  \\  \\ \tt:  \implies Area \: of \: one \: shaded \: region =196 -  \frac{22}{7}  \times 7 \times 7 \\  \\ \tt:  \implies Area \: of \: one \: shaded \: region =196 - 22 \times 7 \\  \\ \tt:  \implies Area \: of \: one \: shaded \: region =196  - 154 \\  \\  \green{\tt:  \implies Area \: of \: one \: shaded \: region =42 { \: cm}^{2} } \\  \\  \tt \circ \: Total \: shaded \: part = 6  \\  \\  \bold{For \: Total \: shaded \: region : } \\ \tt:  \implies Area \: of \:total\: shaded \: region =42 \times 6 \\  \\  \green{\tt:  \implies Area \: of \:total  \: shaded \: region =252 \:  {cm}^{2} }

Attachments:
Answered by BRAINLYBOOSTER12
13

We know that, Area of one shaded region = Areaofsquare − 4 × Area of quadrant

⟹ Area of one shaded region = side² −4× 1/4 πr²

⟹ Area of one shaded region = 14² - π (7)²

⟹ Area of one shaded region = 196 - (22×7)

⟹ Area of one shaded region = 196 - 154 = 42 cm²

Now, total number of shaded parts = 6

Therefore, Area of total shaded region = (42×6) cm² = 252 cm² (Ans)

Similar questions