Answer this question below
Attachments:

Answers
Answered by
5
Hope it helps ✌✌ PLEASE MARK IT AS BRAINLIEST....
Given x = [√(p + 2q) + √(p - 2q) ] / [√(p + 2q) - √(p - 2q)]
rationalise the denominator
x = [√(p + 2q) + √(p - 2q) ]2 / [(p + 2q) - (p - 2q)]
x = [√(p + 2q) + √(p - 2q) ]2 / 4q.
4qx = 2p + 2√(p2 - 4q2)
2qx - p = √(p2 - 4q2) squaring on both sides
4q2x2 - 4pqx + p2 = p2 - 4q2
4q[ qx2 - px + q ] = 0
qx2 - px + q = 0
Given x = [√(p + 2q) + √(p - 2q) ] / [√(p + 2q) - √(p - 2q)]
rationalise the denominator
x = [√(p + 2q) + √(p - 2q) ]2 / [(p + 2q) - (p - 2q)]
x = [√(p + 2q) + √(p - 2q) ]2 / 4q.
4qx = 2p + 2√(p2 - 4q2)
2qx - p = √(p2 - 4q2) squaring on both sides
4q2x2 - 4pqx + p2 = p2 - 4q2
4q[ qx2 - px + q ] = 0
qx2 - px + q = 0
aghavkhanna865:
Helped a lot
Answered by
0
.......................................
Attachments:

Similar questions