Math, asked by blackrose40443, 2 days ago

answer this question
class 9 ​

Attachments:

Answers

Answered by Anonymous
0

Answer:

(i) Taking the RHS,

(x + y)(x² - xy + y²) = x(x² - xy + y² ) + y(x² - xy + y²)

= x³ - x²y + xy² + x²y - xy² + y³

= x³ + y³ = LHS

ii) x³ - y³ = (x - y)(x² + xy + y²)

Taking the RHS,

(x - y)(x² + xy + y²) = x (x² + xy + y²) - y (x² + xy + y²)

= x³ + x²y + xy² - x²y - xy² - y³

= x³ - y³ = LHS

Hence, verified.

(I)photo answer

Attachments:
Answered by ᏞovingHeart
7

Step-by-step explanation:

 \sf (i) \:  x^3+ y^3 = (x+y)(x^2-xy+y^2)

Solution:-

 \sf LHS =  {x}^{3}  +  {y}^3

 \sf RHS = (x + y)( {x}^{2}  - xy +  {y}^{2} )

 \implies \sf (x + y)( {x}^{2}  - xy +  {y}^{2} )

 {\implies \sf x( {x}^{2}  - xy +  {y}^{2} ) + y( {x}^{2}  - xy +  {y}^{2} )}

{ \implies \sf  {x}^{3  }  -  {x}^{2} y + x {y}^{2} +  {x}^{2}y  - x {y}^{2}  +  {y}^{3} }

{ \implies \sf  {x}^{3  }  -  {x}^{2} y+  {x}^{2}y + x {y}^{2}   - x {y}^{2}  +  {y}^{3} }

{ \implies  \boxed{\sf  {x}^{3}  +  {y}^{3}  }}

 \implies \sf LHS

Hence, verified.

 \\

 \sf (ii) \:  x^3 -  y^3 = (x - y)(x^2 + xy+y^2)

Solution:-

 \sf LHS =  {x}^{3}  -  {y}^3

 \sf RHS = (x - y)( {x}^{2} + xy +  {y}^{2} )

 {\implies \sf x( {x}^{2}  + xy +  {y}^{2} ) - y( {x}^{2}  + xy +  {y}^{2} )}

{\implies \sf x^{3}  +  {x}^{2} y +  x{y}^{2}   -  {x}^{2}y   -  x {y}^{2}  -  {y}^{3} }

{\implies \sf x^{3}  +  {x}^{2} y  -  {x}^{2}y+  x{y}^{2}     -  x {y}^{2}  -  {y}^{3} }

  \implies \boxed{ \sf {x}^{3}  -  {y}^{3} }

 \implies \sf LHS

Hence, verified.

Similar questions