Math, asked by Anmolabd, 9 months ago

answer this question don't give irrelevant answers .
icse book
trignomatry is chapter. ​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

Given,

 \frac{ \sec( \alpha )  -  \tan( \alpha ) }{ \sec( \alpha ) +  \tan( \alpha )  }  =  \frac{1}{4}

 =  >  \frac{ \frac{1}{ \cos( \alpha ) } -  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  }{ \frac{1}{ \cos( \alpha ) }  +  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } }  =  \frac{1}{4}

Taking lcm and simplying, we get,

 =  >  \frac{1 -  \sin( \alpha ) }{1 +  \sin( \alpha ) }  =  \frac{1}{4}

Using componendo and dividendo, we get,

 =  >  \frac{1 -  \sin( \alpha ) + 1 +  \sin( \alpha )  }{1 -  \sin( \alpha ) - 1 -  \sin( \alpha )  }  =  \frac{1 - 4}{1 + 4}

 =  >  \frac{2}{ - 2 \sin( \alpha ) }  =  \frac{ - 3}{5}

 =  >  \sin( \alpha )  =  \frac{5}{3}

But this is not possible... as the value of sine belongs to [-1,1]

Similar questions