Math, asked by subhashattri07, 1 month ago

answer this question


elo elo I am back ​

Attachments:

Answers

Answered by ash1654
2

Step-by-step explanation:

Let, tan−1 x = α and tan−1 y = β

From tan−1 x = α we get,

x = tan α

and from tan−1 y = β we get,

y = tan β

Now, tan (α + β) = (tanα+tanβ1−tanαtanβ)

tan (α + β) = x+y1−xy

⇒ α + β = tan−1 (x+y1−xy)

⇒ tan−1 x + tan−1 y = tan−1 (x+y1−xy)

Therefore, tan−1 x + tan−1 y = tan−1 (x+y1−xy), if x > 0, y > 0 and xy < 1.

Answered by sandy1816
5

{\huge{\underline{\textbf{\textsf{\color{navy}{An}}{\purple{sw}}{\pink{er}}}}}}

 {tan}^{ - 1} ( \frac{x}{y} ) -  {tan}^{ - 1} ( \frac{x - y}{x + y} ) \\  =  {tan}^{ - 1} ( \frac{ \frac{x}{y} -  \frac{x - y}{x + y} }{1 +  \frac{x}{y} . \frac{x - y}{x + y} }) \\  =  {tan}^{ - 1}  ( \frac{x(x  +  y) - y(x - y)}{y(x + y) + x(x - y)} ) \\  =  {tan}^{ - 1} ( \frac{ {x}^{2}  + xy - xy +  {y}^{2} }{xy +  {y}^{2} +  {x}^{2}  - xy } ) \\  =  {tan}^{ - 1} (  \frac{ {x}^{2}  +  {y}^{2} }{ {y}^{2} +  {x}^{2}  } ) \\  =  {tan}^{ - 1}  \\   = \frac{\pi}{4}

Similar questions