Math, asked by shatakshichauhan12, 5 months ago

answer this question fast​

Attachments:

Answers

Answered by Anonymous
3

\bf{\underline{\underline{Question}}}

Prove that

\bf{\dfrac{Cos\theta}{Sin(90^\circ-\theta)} + \dfrac{Sin\theta}{Cos(90^\circ-\theta)} = 2}

\bf{\underline{\underline{Solution}}}

\bf{\underline{LHS}}

= \bf{\dfrac{Cos\theta}{Sin(90^\circ-\theta)} + \dfrac{Sin\theta}{Cos(90^\circ-\theta)}}

= \bf{\underline{We\:know}}

\bf{Sin(90^\circ-\theta) = Cos\theta}

\bf{Cos(90^\circ-\theta) = Sin\theta}

\bf{\underline{Hence}}

= \bf{\dfrac{Cos\theta}{Cos\theta} + \dfrac{Sin\theta}{Sin\theta}}

=\bf { \dfrac{ \not{\cancel{Cos\theta}} }{ \not{\cancel{Cos\theta}} }} +  { \dfrac{ \not{\cancel{Sin\theta}}}{ \not{\cancel{Sin\theta}}}}

= \bf{1+1}

= \bf{2\: = \:(RHS)\:\:\:{\underline{\boxed{Proved}}}}

\bf{\underline{\underline{More\:Informations}}}

  • \bf{Sin(90^\circ - \theta) = Cos\theta}

  • \bf{Cos(90^\circ-\theta)=Sin\theta}

  • \bf{Tan(90^\circ-\theta) = Cot\theta}

  • \bf{Cot(90^\circ-\theta) = Tan\theta}

  • \bf{Sec(90^\circ-\theta) = Cosec\theta}

  • \bf{Cosec(90^\circ-\theta) = Sec\theta}
Similar questions