Physics, asked by DwarfPluto, 1 month ago

Answer this question fast !!!​

Attachments:

Answers

Answered by MagicalLove
124

Explanation:

Answer :

we know that,

 \dashrightarrow \bf \:  \vec{B} =  \frac{ \mu_0I}{2\pi \: a} \hat {i} \\  \\  \\  \dashrightarrow \bf \:  \vec{B} =  \frac{ \mu_0}{2\pi }  \:  \:  \frac{ \lambda \: v }{a} \hat {i} \\  \\  \\

 \underline{ \boxed{ \red{ \tt{ \lambda \:  =  \frac{q}{l}  \:  \: and \:  \:I \:  =  \frac{q}{t}  =  \frac{ \lambda \: l}{t}  =  \lambda \: v}}}} \bigstar

 \\  \\  \\  \dashrightarrow \bf \:  \vec{E} \: </u><u>= \frac{ \lambda \hat {j}}{2\pi \epsilon_0a}</u><u>  \\  \\  \\ as \:  \:  we \: know \: that \:  \\  \\ \dashrightarrow \bf \:  \vec{S} \:  = \frac{1}{ \mu_0} (\vec{E} \times  \vec{B}) \\  \\  \\

 \\  \\  \\  \dashrightarrow \bf \:  \vec{E} \:  =  \</u><u>frac{ \lambda \hat {j}}{2\pi \epsilon_0a} \\  \\  \\ as \:  \:  we \: know \: that \:  \\  \\ \dashrightarrow \bf \:  \vec{S} \:  = \frac{1}{ \mu_0} (\vec{E} \times  \vec{B}) \\  \\  \\

 \dashrightarrow \bf \:  \vec{S} =  \frac{1}{ \mu_0 }  \bigg[ \:  \frac{ \lambda \: }{2\pi \epsilon_0a}  \hat{j} \times  \frac{ \mu_0}{2\pi \: a}  \lambda \: v \hat{i} \bigg] \\  \\  \\

 \dashrightarrow \bf \:  \vec{S} =  \frac{ { \lambda}^{2}v }{2\pi \epsilon_0 a}( \hat{j} \times  \hat{i}) \\  \\  \\

 \dashrightarrow \bf \:  \vec{S} =   - \frac{ { \lambda}^{2}v }{2\pi \epsilon_0 a}(   \hat{k}) \\  \\  \\

\underline{\boxed{\bf {\purple{\:  \vec{S} =   - \frac{ { \lambda}^{2}v }{2\pi \epsilon_0 a}(   \hat{k})}}}}

Option (a) is the correct answer !!!

Attachments:
Similar questions