Physics, asked by shivanshkaran75, 11 months ago

answer this question for 25 points.
if I like your answer I may make it the brainliest answer

Attachments:

Answers

Answered by riddhiprada43
2

Answer:

(b) A is perpendicular to B

Attachments:
Answered by Swarup1998
3

Topic - Vector Analysis

We must know some formulae before we solve the problem:

  1. If the two vectors \vec{a} and \vec{b} perpendicular to each other, then their dot product will be zero (0), i.e., \vec{a}.\vec{b}=0.
  2. If \theta be the angle between the two vectors \vec{a} and \vec{b}, then we write \vec{a}.\vec{b}=|\vec{a}|\:|\vec{b}|\:cos\theta.
  3. If |\vec{a}| be the magnitude of \vec{a}, then (\vec{a})^{2}=\vec{a}.\vec{a}=|\vec{a}|^{2}.
  4. Vector scalar products satisfy commutative property, i.e., \vec{a}.\vec{b}=\vec{b}.\vec{a}..
  5. For any vector \vec{a}, we can write |\vec{a}|=a.

Let us solve the given problem now.

Given, \vec{C}=\vec{A}+\vec{B}

Squaring both sides, we get

\quad (\vec{C})^{2}=(\vec{A}+\vec{B})^{2}

\Rightarrow \vec{C}.\vec{C}=(\vec{A}+\vec{B}).(\vec{A}+\vec{B})

\Rightarrow |\vec{C}|^{2}=\vec{A}.\vec{A}+2\:\vec{A}.\vec{B}+\vec{B}.\vec{B}

\Rightarrow |\vec{C}|^{2}=|\vec{A}|^{2}+2\:\vec{A}.\vec{B}+|\vec{B}|^{2}

\Rightarrow C^{2}=A^{2}+B^{2}+2\:\vec{A}.\vec{B}

\Rightarrow C^{2}=C^{2}+2\:\vec{A}.\vec{B}\quad[\because C^{2}=A^{2}+B^{2}]

\Rightarrow \vec{A}.\vec{B}=0

Thus we conclude that the given two vectors \vec{A} and \vec{B} are perpendicular to each other.

Answer: Option (b) is correct.

Similar questions