Math, asked by punithapaul, 10 months ago

answer this question I shall give you 20 points​

Attachments:

Answers

Answered by TRISHNADEVI
4

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: QUESTION \:  \: } \mid}}}}}

 \tt{ \:  \: Prove  \:  \:  \: that,  \:  \: } \\  \\  \tt{\frac{tan {}^{3 } \theta }{1 + tan {}^{2}  \theta}  +  \frac{cot {}^{3 } \theta }{1 + cot{}^{2}  \theta}  = sec \:  \theta \: cosec \:  \theta- 2 \: sin \:  \theta \: \cos \:  \theta}

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \tt{L.H.S. =  \frac{tan {}^{3 } \theta }{1 + tan {}^{2}  \theta}  +  \frac{cot {}^{3 } \theta }{1 + cot{}^{2}  \theta} } \\  \\    \tt{ =  \frac{ \frac{sin {}^{3}  \theta}{cos {}^{3}   \theta} }{sec {}^{2}  \theta}  +   \frac{ \frac{cos {}^{3}  \theta}{sin {}^{3}   \theta} }{cosec {}^{2}  \theta}} \\  \\  \tt{ = ( \frac{sin {}^{3}  \theta}{cos {}^{3} \theta }  \times  \frac{1}{sec {}^{2} \theta } ) + ( \frac{cos {}^{3}  \theta}{sin {}^{3} \theta }  \times  \frac{1}{cosec {}^{2} \theta } ) } \tt{ = ( \frac{sin {}^{3}  \theta}{cos {}^{3} \theta }  \times  cos {}^{2} \theta) + ( \frac{cos {}^{3}  \theta}{sin {}^{3} \theta }  \times  sin {}^{2} \theta ) }

\tt{  = \frac{sin {}^{3}  \theta}{cos \:  \theta}  +  \frac{cos {}^{3}  \theta}{sin \:  \theta} }  \\  \\ \tt{ =  \frac{sin {}^{4} \theta  + cos {}^{4}  \theta}{sin \: \theta .cos \:  \theta}  }\\  \\    \tt{=  \frac{sin {}^{4} \theta  + cos {}^{4}  \theta  + 2.sin {}^{2} \theta.cos {}^{2}  \theta -2.sin {}^{2} \theta.cos {}^{2}  \theta }{sin \: \theta .cos \:  \theta} }  \tt{ =  \frac{(sin {}^{2} \theta + cos {}^{2} \theta) {}^{2}    - 2.sin {}^{2} \theta.cos {}^{2}  \theta}{sin \: \theta . cos \:  \theta}}

 \tt{=   \frac{(1) {}^{2}   - 2.sin {}^{2} \theta.cos {}^{2}  \theta }{sin \: \theta. cos \:  \theta}}  \\  \\ \tt{   = \frac{1   - 2.sin {}^{2} \theta.cos  {}^{2}  \theta }{sin \: \theta .cos \:  \theta}} \\  \\ \tt{  =  \frac{1}{sin \: \theta.cos \:  \theta}   -  \frac{2.sin {}^{2}  \theta .cos  {}^{2} \theta}{sin \: \theta .cos \:  \theta} } \\  \\    \tt{=  \frac{1}{sin \:  \theta} . \frac{1}{cos \:  \theta }- 2 \: sin \:  \theta \: \cos \:  \theta }\\  \\ \tt{  = cosec \:  \theta \:sec \:  \theta- 2 \: sin \:  \theta \: \cos \:  \theta } \tt{= sec \:  \theta \: cosec \:  \theta- 2 \: sin \:  \theta \: \cos \:  \theta} \\  \\    \tt{ = R.H.S.}

FORMULA USED

 \tt{1. \:  \: tan  \: A =  \frac{sin \: A}{cos \: A}  \:  \implies \: tan {}^{2}   \: A =  \frac{sin  {}^{2} \: A}{cos {}^{2}  \: A}  } \\  \\  \tt{2. \:  \: cot  \: A =  \frac{cos \: A}{sin\: A}  \:  \implies \: cot{}^{2}   \: A =  \frac{cos  {}^{2} \: A}{sin {}^{2}  \: A} } \\  \\  \tt{3. \:  \:1 + tan {}^{2} A = sec {}^{2} A } \\  \\ \tt{4. \:  \:1 + cot{}^{2} A = cosec {}^{2} A } \\  \\  \tt{5. \:  \:  \frac{1}{sec \: A} = cos \: A } \\  \\  \tt{6. \: \:  \frac{1}{cosec \:A }  = sin \: A } \\  \\

Answered by crazylikeminnie87
3

Answer:

) You purchased two pieces of cloth measuring 1.5 m and 1.2 m each at Rs. 200 and Rs. 100 per meter respectively and gave Rs. 500 at the payment counter. How much cash will you get back? a) Rs. 25 b) Rs. 80 c) Rs. 51 d) Rs. 70 2) A fraction having denominator 30 and lying between 5/8 and 7/11 is a) 21 b) 19 c) 20

Similar questions