Math, asked by Anonymous, 13 days ago

Answer this question

no spam otherwise I will report your all answers​

Attachments:

Answers

Answered by ripinpeace
11

Step-by-step explanation:

★Given -

  •  \rm{ \sqrt{ \dfrac{1 +  \sin \theta}{1 -  \sin \theta } } }

★To prove -

  •  \rm{ { \dfrac{1 +  \sin \theta }{cos\theta} } }

★Concept -

  • Here, we'll use the concept of rationalising the denominator to get the required answer. Let's do it!!

★Solution -

LHS

 \longmapsto \rm{ \sqrt{ \dfrac{1 +  \sin \theta }{1 -  \sin\theta } } }

 \longmapsto \rm{ \sqrt{ \dfrac{1 +  \sin\theta }{1 -  \sin \theta  } \times   \dfrac{1 +  \sin \theta }{1 +  \sin\theta} }}

 \longmapsto \rm{ \sqrt{ \dfrac{(1 +  \sin\theta)^{2}  }{ {1}^{2}  -  \sin  ^{2} \theta} }}

 \longmapsto \rm{ \sqrt{ \dfrac{(1 +  \sin\theta)^{2}  }{ \cos ^{2} \theta} }}

Since, sin²∅ + cos²∅ = 1

=> cos²∅ = 1 - sin²∅

\longmapsto \rm{\orange{{ \dfrac{1 +  \sin\theta  }{ \cos \theta}=LHS }}}

Similar questions