Math, asked by MiniDoraemon, 3 months ago

Answer this Question of iit jee . Chapter → Three dimensional Geometry

Options for the question :-
a. any value
b. exactly one value
c. exactly two values exactly three values​

Attachments:

Answers

Answered by Ganesh094
6

Answer:

Two lines \frac{x - x _{1}}{ a_{1} }  = \frac{y - y_{1}}{ b_{1} } = \frac{z - z_{1}}{ z_{1}}

and \frac{x - x _{2}}{ a_{2} } = \frac{y - y _{2}}{ b_{2} } = \frac{z - z _{2}}{ c_{2} }

are coplanar if  |\frac{ {x_{2} -  x_{1} } }{   \frac{a_{1}}{a_{2}}  }    \frac{y_{2} -  y_{1}}{ \frac{b_{1}}{b_{2}}  }  \frac{z_{2} -  z_{1}}{  \frac{c_{1}}{c_{2}}   }  |  = 0

where  x_{1} = 2 \: y_{1} = 3 \: z_{1} = 4 \\ x_{2} = 1 \: y_{2} = 4 \: z_{2} = 5 \\ and  \\ \: a_{1} = 1 \: b_{1} = 1 \: c_{1} =  - k \\ a_{2} = k \: b_{2} = 2 \: c_{2} = 1

⟼ |\frac{ {1 -  2 } }{   \frac{1}{k}  }    \frac{4 -  3}{ \frac{1}{2}  }  \frac{5-  4} {\frac{ - k}{1}} |  = 0

⟼ |\frac{  - 1 }{   \frac{1}{k}  }    \frac{1}{ \frac{1}{2}  }  \frac{1} {\frac{ - k}{1}} |  = 0

⟼ \:  - 1(1 + 2k) - 1(1 +  {k}^{2} ) + 1(2 - k) = 0 \\ ⟼ - 1 - 2k - 1 -  {k}^{2}  + 2 - k = 0 \\ ⟼ -  {k}^{2}  - 3k = 0 \\ ⟼k(k + 3) = 0 \\k = 0, -3

For K = 0 we have

⟼ |\frac{ { - 1 } }{   \frac{1}{0}  }    \frac{1 }{ \frac{1}{2}  }  \frac{1}{  \frac{0}{1}   }  |   = 0 \\ ⟼ - 1(1 - 0) - 1(1 - 0) + 1(2 - 0) =  - 1 - 1 + 2 = 0

For K = - 3 we have

⟼ |\frac{ { - 1 } }{   \frac{1}{ - 3}  }    \frac{1 }{ \frac{1}{2}  }  \frac{1}{  \frac{3}{1}   }  |   = 0 \\ ⟼ - 1(1 - 6) - 1(1  + 9 ) + 1(2  + 3) =   0 \\⟼5 - 10 + 5 = 0 \\ k = - 3

Hence K = 0 , - 3 are valid .

Answered by ridhya77677
2

Answer:k have exactly two values.

Answer in the attachment.

Attachments:
Similar questions