Answer this Question of iit jee . Chapter → Three dimensional Geometry

Answers
EXPLANATION.
The two lines.
⇒ x = ay + b, z = cy + d.
⇒ x = a'y + b', z = c'y + d'.
Are perpendicular to each other.
As we know that,
We can write equation as,
⇒ (x - b)/a = y/1 = (z - d)/c.
⇒ (x - b')/a' = y/1 = (z - d')/c'.
⇒ a₁ = a, b₁ = 1, c₁ = c.
⇒ a₂ = a', b₂ = 1, c₂ = c'.
Two Lines are perpendicular if,
⇒ a₁ a₂ + b₁ b₂ + c₁ c₂ = 0.
⇒ (a)(a') + (1)(1) + (c)(c') = 0.
⇒ aa' + 1 + cc' = 0.
⇒ aa' + cc' = - 1.
Option [A] is correct answer.
Answer:
option (a) aa' + cc' +1 = 0
Step-by-step explanation:
Given :- Two lines x = ay + b , z = cy + d
and x = a'y + b' , z = c'y + d'
Given equation x = ay+ b , z = cy + d can be Rewritten as
x - b / a = y - 0 / 1 = z - d / c
- , x - b / a = y - 0 / 1 = z -d / c
and , x = a'y + b' , z = c'y + d can be Rewritten as
- x - b' / a' = y - 0 / 1 = z - d' / c'
these points will be perpendicular if a(a' + cc' + 1 = 0 [∵ l₁l₂ + m₁m₂ + n₁n₂ = 0]