Math, asked by MiniDoraemon, 2 months ago

Answer this Question of iit jee . Chapter → Three dimensional Geometry ​

Attachments:

Answers

Answered by ridhya77677
2

Answer:

Line AB makes angle 45° with positive x-axis,,

→ direction \:  cosine , l = cos 45° =  \frac{1}{ \sqrt{2} }

Line AB makes angle 120° with positive y-axis,,

→ direction \:  cosine, \:  m = cos120°  =  \frac{ - 1}{2}

Lime AB makes angle θ with positive z-axis,,

→ direction cosine, n = cosθ

Now,

l² + m² + n² = 1

→  { (\frac{1}{ \sqrt{2} } })^{2}  +  {( \frac{ - 1}{2} })^{2}  + cosθ = 1

 →\frac{1}{2}  +  \frac{1}{4}  +  { \cos }^{2} θ = 1

 →{ \cos }^{2}θ = 1 -  \frac{1}{2}  -  \frac{1}{4}

→ { \cos }^{2}θ =  \frac{4 - 2 - 1}{4}

→ { \cos }^{2}θ =  \frac{1}{4}

→cosθ = ± \frac{1}{ 2}

Since, θ is an acute angle .,,

∴cosθ = \frac{1}{2 }

∴θ =  60°

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that direction cosines of line AB be ( l, m, n).

We know,

Direction cosines of the line is defined as cosine of the angle which a line makes with x - axis, y - axis and z - axis respectively.

\rm :\longmapsto\:If \: a \: line \: makes \: an \: angle \:  \alpha , \beta , \gamma  \: withx,y,z \: axis,\: then

\rm :\longmapsto\:l = cos \alpha

\rm :\longmapsto\:m = cos \beta

\rm :\longmapsto\:n = cos \gamma

According to statement,

It is given that line AB makes an angle of 45° with x - axis.

So,

\rm :\longmapsto\:l = cos 45 \degree  =  \dfrac{1}{ \sqrt{2} }

Also, it is given that line AB makes an angle of 120° with y - axis respectively,

So,

\rm \longmapsto\:m= cos120\degree  =cos(180\degree- 60\degree) =  - cos60\degree=- \dfrac{1}{ 2}

Also, given that line AB makes an acute angle θ with z - axis.

So,

\rm :\longmapsto\:n = cos \theta

Now,

We know that,

\rm :\longmapsto\: {l}^{2} +  {m}^{2} +  {n}^{2} = 1

On substituting the values of l, m and n, then

\rm :\longmapsto\:\dfrac{1}{2}  + \dfrac{1}{4}  +  {cos}^{2}\theta = 1

\rm :\longmapsto\:\dfrac{2 + 1}{4}  +  {cos}^{2}\theta = 1

\rm :\longmapsto\:\dfrac{3}{4}  +  {cos}^{2}\theta = 1

\rm :\longmapsto\: {cos}^{2}\theta = 1 - \dfrac{3}{4}

\rm :\longmapsto\: {cos}^{2}\theta = \dfrac{4 - 3}{4}

\rm :\longmapsto\: {cos}^{2}\theta = \dfrac{1}{4}

\rm :\longmapsto\: {cos}\theta = \:  \pm \:  \dfrac{1}{2}

\rm :\longmapsto\:As \: it \: is \: given \: that \:  \theta \: is \: acute

Therefore,

\rm :\longmapsto\: {cos}\theta = \:   \dfrac{1}{2}

\rm :\longmapsto\: {cos}\theta  \: = \:   cos60\degree

\bf\implies \: \theta \:  =  \: 60\degree

Additional Information :-

\rm :\longmapsto\:If \: a \: line \: makes \: an \: angle \:  \alpha , \beta , \gamma  \: withx,y,z \: axis,\: then

\rm :\longmapsto\:(1). \:  \:  {cos}^{2} \alpha  + {cos}^{2} \beta  + {cos}^{2} \gamma  = 1

\rm :\longmapsto\:(2). \:  \:  {sin}^{2} \alpha  + {sin}^{2} \beta  + {sin}^{2} \gamma  = 2

Similar questions