Math, asked by MiniDoraemon, 1 month ago

Answer this Question of iit jee . Chapter → Three dimensional Geometry ​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given equation of line is

\rm :\longmapsto\:x = \dfrac{y - 1}{2}  = \dfrac{z - 3}{\lambda }

can be rewritten as

\rm :\longmapsto \: \dfrac{x}{1}  = \dfrac{y - 1}{2}  = \dfrac{z - 3}{\lambda }

So, Direction ratios of line is given by

\rm :\longmapsto\:d.r's \:  = (1, \: 2, \: \lambda ) -  -  - (1)

So,

\rm :\longmapsto\: \vec{b} \:  =  \hat{i} + 2\hat{j} + \lambda \hat{k}

So,

\rm :\longmapsto\: |\vec{b} | =  \sqrt{1 + 4 +  {\lambda }^{2} } =  \sqrt{5 +  {\lambda }^{2} }

Again,

Equation of plane is

\rm :\longmapsto\:x + 2y + 3z = 4

So, normal to the plane or direction ratios of plane is

\rm :\longmapsto\:d.r's \:  = (1, \: 2, \: 3 ) -  -  - (2)

So,

\rm :\longmapsto\: \vec{n} \:  =  \hat{i} + 2\hat{j} + 3 \hat{k}

So,

\rm :\longmapsto\: | \vec{n}| =  \sqrt{1 + 4 + 9} =  \sqrt{14}

Let us assume that angle between line and plane is p.

Now, it is given that

\rm :\longmapsto\:p =  {cos}^{ - 1} \sqrt{\dfrac{5}{14} }

So, by using triangle method, we get

\rm :\longmapsto\:p =  {sin}^{ - 1} \dfrac{3}{ \sqrt{14} }

\rm :\longmapsto\:sinp =\dfrac{3}{ \sqrt{14} }

Now, we know that

Angle p, between line and plane is given by

\rm :\longmapsto\:sinp = \dfrac{\vec{b}  \: . \:  \vec{n}}{ |\vec{b} |  \:  | \vec{n}| }

On substituting all the values, evaluated above we get

\rm :\longmapsto\:\dfrac{3}{ \sqrt{14} }  = \dfrac{(\hat{i} + 2\hat{j} + \lambda \hat{k}) \: . \: (\hat{i} + 2\hat{j} + 3\hat{k})}{ \sqrt{14}  \times  \sqrt{5 +  {\lambda }^{2} } }

\rm :\longmapsto\:3 = \dfrac{1 + 4 + 3\lambda }{ \sqrt{5 +  {\lambda }^{2} } }

\rm :\longmapsto\:3 = \dfrac{5+ 3\lambda }{ \sqrt{5 +  {\lambda }^{2} } }

\rm :\longmapsto\:3 \sqrt{5 +  {\lambda }^{2} } = 5 + 3\lambda

On squaring both sides, we get

\rm :\longmapsto\:9(5 +  {\lambda }^{2} ) = 25 + 9 {\lambda }^{2} + 30\lambda

\rm :\longmapsto\:45+  9{\lambda }^{2} = 25 + 9 {\lambda }^{2} + 30\lambda

\rm :\longmapsto\:45 = 25 + 30\lambda

\rm :\longmapsto\:45 - 25 = 30\lambda

\rm :\longmapsto\:20= 30\lambda

\rm :\longmapsto\:2= 3\lambda

\bf\implies \: \lambda = \dfrac{2}{3}

HENCE

  • Option (b) is correct

Additional Information :-

Let us consider two planes,

\rm :\longmapsto\:\vec{r}. \vec{n_1} = c

and

\rm :\longmapsto\:\vec{r}. \vec{n_2} = d

Then,

1. Two planes are parallel iff

\rm :\longmapsto\:\vec{n_1} = k \: \vec{n_2}

2. Two planes are perpendicular off

\rm :\longmapsto\:\vec{n_1} \: .\: \vec{n_2} = 0

3. Angle p, between two planes is given by

\rm :\longmapsto\:cosp = \dfrac{\vec{n_1} \: . \: \vec{n_2}}{ |\vec{n_1} |  \:  |\vec{n_2}| }

Answered by ridhya77677
1

let the angle between the line and plane be θ.

then,

θ =  { \cos }^{ - 1} ( \sqrt{ \frac{5}{14} } )

→ \cosθ   =  \sqrt{ \frac{5}{14} }

→ \sqrt{1 -  {  \sin }^{2}θ }  =  \sqrt{ \frac{5}{14} }

squaring both sides, we get,

→1 -  { \sin }^{2} θ =  \frac{5}{14}

→ { \sin}^{2} θ =   \frac{9}{14}

→ \sinθ =  \frac{3}{√14} ----eqn(1). (∵θ is acute angle)

Now,

The \: direction \: ratios \: of \: given \: line \: \frac{x}{1}  =  \frac{y - 1}{2}  =  \frac{z - 3}{λ}  \: are \: 1,2,λ.

and the direction ratio of the given plane x+2y+3z=4 is 1, 2, 3.

→a₁=1, b₁=2, c₁=λ

→a₂=1, b₂=2, c₂=3

→ \sin(θ)  =  \frac{1 + 4 + 3λ}{ \sqrt{ {1}^{2} +  {2}^{2} +  {λ}^{2}   }  \sqrt{ {1}^{2} +  {2}^{2}  +  {3}^{2}  } }

from eqn(1)

→ \frac{3}{ \sqrt{14} } =  \frac{5 + 3λ}{ \sqrt{5 +  {λ}^{2} } \sqrt{14}  }

3 \sqrt{ {λ}^{2}  + 5}  = 5 + 3λ

squaring both sides, we get,

9( {λ}^{2} + 5) =  ({5 + 3λ})^{2}

9 {λ}^{2}  + 45 =  25 + 9 {λ}^{2}  + 30λ

30λ = 45 - 25

λ =  \frac{20}{30}

λ =  \frac{2}{3}

Attachments:
Similar questions