answer this question of maths fast
Attachments:
Answers
Answered by
1
sin(A+B)sin(A-B)........
Answered by
1
Given:
Sina sin(a+2b)-sinb sin(b+2a )
=2 {sina sin(a+2b)-sinbsin(b+2a)}/2
=cos(a+2b-a)-cos(a+2b+a)-{cos(b+2a-b)-cos(b+2a+b)}/2
Since,[2sinAcosB=cos(A-B)-cos(A+B)]
={cos(2b)-cos(2a+2b)-cos(2a)+cos(2a+2b)}/2
=(cos2b-cos2a)/2
Also,we know {cosA-cosB=-2 sin(A+B)/2*sin(a-b)/2
={-2 sin(2a+2b)/2*sin(2b-2a)/2}/2
={-2 sin(a+b)*(-)(a-b)}/2
=sin(a+b)*sin(a-b)
Hence, proved
Similar questions