Math, asked by hello2457, 4 months ago

answer this question of quadratic equations chapter.​

Attachments:

Answers

Answered by Arceus02
4

We have to find the value of,

  \sf\dfrac{ {x}^{14} + 1 }{ {x}^{7} }

On simplifying it,

 \sf \:  =   \dfrac{ {x}^{14} }{ {x}^{7} }  +  \dfrac{1}{ {x}^{7} }

 \sf \:  =    {x}^{(14 - 7)}   +  \dfrac{1}{ {x}^{7} }

 \sf \:  =    {x}^{7}   +  \dfrac{1}{ {x}^{7} }

\\

Answer:

Given that,

 \sf {x}^{2}  - 3x + 1 = 0

 \sf \longrightarrow {x}^{2}  + 1 = 3x

Dividing both sides by \sf x,

 \sf \longrightarrow x  +  \dfrac{1}{x}  = 3 \quad \quad \dots(1)

\\

Cubing both sides of equation (1),

 \sf \longrightarrow  {\bigg( x  +  \dfrac{1}{x} \bigg)}^{3}   =  {3}^{3}

 \sf \longrightarrow   {x}^{3}  +  \dfrac{1}{ {x}^{3} }  +  \bigg(3 \times  \cancel{x} \times   \cancel{\dfrac{1}{x}} \bigg )  \bigg(x +  \dfrac{1}{x} \bigg)   =  27

Putting the value of (x + 1/x) from equation (1),

 \sf \longrightarrow \:  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  + 3(3) = 27

 \sf \longrightarrow \:  {x}^{3}  +  \dfrac{1}{ {x}^{3} }   = 27 - 9

 \sf \longrightarrow \:  {x}^{3}  +  \dfrac{1}{ {x}^{3} }   = 18 \quad \quad \dots(2)

\\

Squaring both sides of equation (1),

 \sf \longrightarrow  {\bigg( x  +  \dfrac{1}{x} \bigg)}^{2}   =  {3}^{2}

 \sf \longrightarrow   {x}^{2} +  \dfrac{1}{ {x}^{2} } +   \bigg(2 \times   \cancel{x}  \times    \cancel{\dfrac{1}{x}} \bigg)   =  {3}^{2}

 \sf \longrightarrow \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 = 9

 \sf \longrightarrow \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }   = 7 \quad \quad \dots(3)

\\

Squaring both sides of equation (3),

 \sf \longrightarrow  {\Bigg \{ x {}^{2}   +    { \bigg(\dfrac{1}{x} \bigg) }^{2}  \Bigg \}}^{2}   =  {7}^{2}

 \sf \longrightarrow   {x}^{4} +  \dfrac{1}{ {x}^{4} } +   \bigg(2 \times   \cancel{ {x}^{2} }  \times    \cancel{\dfrac{1}{ {x}^{2} }} \bigg)   =  49

 \sf \longrightarrow \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  + 2 = 49

 \sf \longrightarrow \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }   = 47 \quad \quad \dots(4)

\\

Multiplying equation (2) and (4),

  \sf \longrightarrow  \bigg( {x}^{3}  +  \dfrac{1}{ {x}^{3} }  \bigg) \bigg( {x}^{4}  +  \dfrac{1}{ {x}^{4} }  \bigg) =  {x}^{7}  +   \blue{\dfrac{1}{x}  + x} +  \dfrac{1}{ {x}^{7} }

Putting the values from equation (1), (2), and (4),

  \sf \longrightarrow  18  \times 47  =  {x}^{7}  +     \dfrac{1}{ {x}^{7} }  + 3

  \sf \longrightarrow   {x}^{7}  +     \dfrac{1}{ {x}^{7} }   = 846 - 3

  \sf \longrightarrow  {x}^{7}  +     \dfrac{1}{ {x}^{7} }   = 843

  \longrightarrow  \underline{ \underline{ \green{ \sf{   \sf\dfrac{ {x}^{14} + 1 }{ {x}^{7} }    = 843}}}}

Similar questions