Math, asked by 2429, 1 year ago

Answer this question please

Attachments:

Answers

Answered by Anonymous
17

 \:\:  \underline{\underline{\bf{\large\mathfrak\red{~~Solution~~}}}}

the there sides are 18cm,12cm, and

(40-(12+18))=10 cm

now the half of the perimeter=40/2=20 cm

therefore area....

 \sqrt{20(20 - 18)(20 - 12)(20 - 10)} cm {}^{2}  \\  =  \sqrt{20 \times 2 \times 8 \times 10}  \\  = 10 \times 4 \sqrt{2}  \\  = 40 \sqrt{2}  \: cm {}^{2}

:\:  \underline{\underline{\bf{\large\mathfrak{~hope ~this ~help~you~~}}}}

Answered by Anonymous
94

\huge\underline\purple{\sf Answer:-}

\large{\boxed{\sf Area\:of\: triangle=56.56{cm}^{2}}}

\huge\underline\purple{\sf Solution:-}

Given :-

First side (a) = 18 cm

Second side (b) = 12cm

Third side (c)= ?

Perimeter of triangle = 40 cm

\large{\boxed{\sf Perimeter\:Of\: Triangle=a+b+c}}

On Putting value :-

\large\implies{\sf 40=18+13+c}

\large\implies{\sf c =40-30}

\large\implies{\sf c =10cm}

Also ,

\large{\boxed{\sf s ={\frac{a+b+c}{2}}}}

\large\implies{\sf {\frac{40}{2}}}

\large\implies{\sf s =20}

By Heron's Formula :-

\large{\boxed{\sf Area\:Of\:triangle(A)={\sqrt {s(s-a)(s-b)(s-c)}}}}

\large{\sf A ={\sqrt{20(20-18)(20-12)(20-10)}}}

\large{\sf A={\sqrt{20×2×8×10}}}

\large{\sf A=40{\sqrt{2}}}

We know that :-

\large{\sf \sqrt{2}=1.414}

\large{\sf A = 56.56{cm}^{2}}

\large\red{\boxed{\sf A=56.56{cm}^{2}}}

Similar questions