answer this question please
Attachments:
Answers
Answered by
1
Given, (1+tan^2 theta)(1-sintheta)(1+costheta)
= (1+tan^2theta)(1-sintheta+costheta - sinthetacostheta)
= sec^2theta(1-sintheta+costheta - sinthetacostheta)
= 1/cos^2theta(1-sintheta+costheta - sinthetacostheta)
= 1-sintheta+costheta-sinthetacostheta/(cos^2theta)
= (sec^2theta-secthetatantheta + sectheta-tantheta)
= sectheta(sectheta-tantheta)+(sectheta-tantheta)
= (sectheta+1)(sectheta-tantheta).
= (1+tan^2theta)(1-sintheta+costheta - sinthetacostheta)
= sec^2theta(1-sintheta+costheta - sinthetacostheta)
= 1/cos^2theta(1-sintheta+costheta - sinthetacostheta)
= 1-sintheta+costheta-sinthetacostheta/(cos^2theta)
= (sec^2theta-secthetatantheta + sectheta-tantheta)
= sectheta(sectheta-tantheta)+(sectheta-tantheta)
= (sectheta+1)(sectheta-tantheta).
Answered by
0
hello users ......
we have to simplify:-
( 1 + tan²θ) ( 1 - sin θ) (1 + cos θ) = ?
solution :-
we know that :
1 + tan²θ = sec² θ
now,
( 1 + tan²θ) ( 1 - sin θ) (1 + cos θ)
= sec² θ × { 1 + cos θ - sin θ - sin θ cos θ }
= sec² θ + cos θ × sec² θ - sin θ ×sec² θ - sin θ cos θ × sec² θ
= sec² θ + sec θ - tan θ sec θ - tan θ
= sec θ ( sec θ + 1 ) - tan θ ( sec θ + 1 )
= ( sec θ - tan θ ) ( sec θ +1 ) answer
❈❈hope it helps ❈❈
we have to simplify:-
( 1 + tan²θ) ( 1 - sin θ) (1 + cos θ) = ?
solution :-
we know that :
1 + tan²θ = sec² θ
now,
( 1 + tan²θ) ( 1 - sin θ) (1 + cos θ)
= sec² θ × { 1 + cos θ - sin θ - sin θ cos θ }
= sec² θ + cos θ × sec² θ - sin θ ×sec² θ - sin θ cos θ × sec² θ
= sec² θ + sec θ - tan θ sec θ - tan θ
= sec θ ( sec θ + 1 ) - tan θ ( sec θ + 1 )
= ( sec θ - tan θ ) ( sec θ +1 ) answer
❈❈hope it helps ❈❈
Similar questions