Math, asked by Dpadmavathidharani, 1 month ago

Answer this question please ​

Attachments:

Answers

Answered by anindyaadhikari13
4

\textsf{\large{\underline{Solution}:}}

We have to prove that:

 \rm: \longmapsto \sqrt{ \dfrac{1 +  \cos(x) }{1 -  \cos(x) } }  + \sqrt{ \dfrac{1  - \cos(x) }{1 +  \cos(x) } } = \dfrac{2}{ \sin(x) }

Now consider the first term in LHS. We have:

 \rm =  \sqrt{ \dfrac{1 +  \cos(x) }{1 -  \cos(x) }}

Multiplying both numerator and denominator by 1 + cos(x), we get:

 \rm =  \sqrt{ \dfrac{ \{1 +  \cos(x) \} \{1 +  \cos(x) \}  }{ \{1 -  \cos(x) \} \{1 +  \cos(x) \}}}

 \rm =  \sqrt{ \dfrac{ \{1 +  \cos(x) \}^{2} }{1 -  { \cos}^{2}(x) }}

We know that:

 \rm: \longmapsto { \sin}^{2}(x) +  { \cos}^{2}(x) =  1

 \rm: \longmapsto { \sin}^{2}(x) =1   -{ \cos}^{2}(x)

Therefore, we get:

 \rm =  \sqrt{ \dfrac{ \{1 +  \cos(x) \}^{2} }{{ \sin}^{2}(x) }}

 \rm = \dfrac{1 +  \cos(x) }{ \sin(x) }

Now, the second term in LHS is just the reciprocal of first term.

Therefore, the second term will be:

 \rm = \dfrac{ \sin(x)}{1 +  \cos(x) }

Now consider LHS:

 \rm = \dfrac{1 +  \cos(x) }{ \sin(x) }  +  \dfrac{ \sin(x) }{1 +  \cos(x) }

 \rm = \dfrac{ \{1 +  \cos(x) \}^{2} +  { \sin}^{2}(x)  }{ \sin(x) \{1 +  \cos(x) \}  }

 \rm = \dfrac{1 + 2 \cos(x)  +  { \cos}^{2}(x)  +   { \sin}^{2}(x)  }{ \sin(x) \{1 +  \cos(x) \}  }

 \rm = \dfrac{1 + 2 \cos(x)  +  1 }{ \sin(x) \{1 +  \cos(x) \}  }

 \rm = \dfrac{2+ 2 \cos(x)  }{ \sin(x) \{1 +  \cos(x) \}  }

Taking 2 as common, we get:

 \rm = \dfrac{2 \{1+  \cos(x) \}  }{ \sin(x) \{1 +  \cos(x) \}  }

 \rm = \dfrac{2}{ \sin(x)  }

We observe that LHS = RHS. (Hence Proved)

\textsf{\large{\underline{Learn More}:}}

1. Relationship between sides.

  • sin(x) = Height/Hypotenuse.
  • cos(x) = Base/Hypotenuse.
  • tan(x) = Height/Base.
  • cot(x) = Base/Height.
  • sec(x) = Hypotenuse/Base.
  • cosec(x) = Hypotenuse/Height.

2. Square formulae.

  • sin²x + cos²x = 1.
  • cosec²x - cot²x = 1.
  • sec²x - tan²x = 1.

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x).
  • cos(x) = 1/sec(x).
  • tan(x) = 1/cot(x).

4. Cofunction identities.

  • sin(90° - x) = cos(x).
  • cos(90° - x) = sin(x).
  • cosec(90° - x) = sec(x).
  • sec(90° - x) = cosec(x).
  • tan(90° - x) = cot(x).
  • cot(90° - x) = tan(x).

5. Even Odd Identities.

  • sin(-x) = -sin(x).
  • cos(-x) = cos(x).
  • tan(-x) = -tan(x).

anindyaadhikari13: Thanks for the brainliest :)
Answered by AkashMathematics
1

Here is your answer in the attachment.

  • Hope it helps you
  • thanks
  • regards, AKASHITEMHEAVEN
Attachments:
Similar questions