Math, asked by tuktukpandey, 1 year ago

answer this question please it's very urgent

Attachments:

Answers

Answered by SahilChandravanshi
2
hope this will help you..
By the way Sorry for the Handwriting.. :))
Attachments:

tuktukpandey: hey guys
Answered by InesWalston
1

Solution-

Given,

y=\sin (\log x)

From the properties of trigonometry,

\Rightarrow \sin^2 x+\cos^2 x=1

\Rightarrow \cos^2 x=1-\sin^2 x

Putting x = log x,

\cos^2 (\log x)=1-\sin^2 (\log x)

Putting the given value of y,

\cos^2 (\log x)=1-y^2

\cos (\log x)=\sqrt{1-y^2}

Now,

\Rightarrow y=\sin (\log x)

\Rightarrow \frac{dy}{dx} =\frac{d(\sin (\log x))}{dx}

\Rightarrow \frac{dy}{dx} =\frac{d(\sin (\log x))}{d(\log x)} .\frac{d(\log x)}{dx}

\Rightarrow \frac{dy}{dx} =\cos (\log x).\frac{1}{x}

\Rightarrow \frac{dy}{dx} =\sqrt{1-y^2}.\frac{1}{x}

\Rightarrow \frac{dy}{dx} =\frac{\sqrt{1-y^2}}{x}

Similar questions