Math, asked by SomeoneVerySpecial, 1 year ago

Answer this question please!

Question no.8


thanks!

Attachments:

Answers

Answered by BloomingBud
7
\mathbb{ SOLUTION } :

<b>Given :
X and Y are the mid points on BC and CD respectively of a parallelogram ABCD.

\bf{To\:be \:proved } :
ar(Δ AXY) = \frac{3}{8} ar( \parallel^{\normalsize{gm}} ABCD )

\bf{\underline {proof}} :

\bf{ Construction } :
Join BD,
draw mid point (\bf{P}) on AD and join XP

=> ar(Δ CXY) = \frac{1}{4} (Δ BCD)

[ \therefore X and Y are mid points ]

So,

=> ar(Δ CXY) = \frac{1}{4} [ ar(\frac{1}{2} \parallel^{\normalsize{gm}} ABCD ) ]

=> ar(Δ CXY) = \frac{1}{8} ar( \parallel^{\normalsize{gm}} ABCD ) ___(i)

Now,

=> ar(Δ ABX) = \frac{1}{2} ar( \parallel^{\normalsize{gm}} ABXP )

=> ar(Δ ABX) = \frac{1}{2} ar [ \frac{1}{2} ar( \parallel^{\normalsize{gm}} ABCD ) ]

=> ar(Δ ABX) = \frac{1}{4} ar( \parallel^{\normalsize{gm}} ABCD )___(ii)

Similarly,

=> ar(Δ ADY) = \frac{1}{4} ar ( \parallel^{\normalsize{gm}} ABCD )___(iii)

From figure,

=> ar(Δ AXY) = ar( \parallel^{\normalsize{gm}} ABCD ) - ar(Δ ABX) - ar(Δ CXY) - ar(ΔADY)

=> ar(Δ AXY) = ar( \parallel^{\normalsize{gm}} ABCD ) - \frac{1}{4} ar( \parallel^{\normalsize{gm}} ABCD) - \frac{1}{8} ar( \parallel^{\normalsize{gm}} ABCD ) - \frac{1}{4} ar ( \parallel^{\normalsize{gm}} ABCD)

=> ar(Δ AXY) = ar( \parallel^{\normalsize{gm}} ABCD ) [ 1 - \frac{1}{4} - \frac{1}{8} - \frac{1}{4} ]

=> ar(Δ AXY) = ar( \parallel^{\normalsize{gm}} ABCD) [ \frac{8-2-1-2}{8} ]

=> ar(Δ AXY) = ar( \parallel^{\normalsize{gm}} ABCD) \frac{3}{8}

=> ar(Δ AXY) = \frac{3}{8} ar( \parallel^{\normalsize{gm}} ABCD)

\bf{Hence,\:proved }
Attachments:

SomeoneVerySpecial: Thank you Sisso! :-D
Answered by prashant247
0

Answer:

Tobeproved :

ar(Δ AXY) = \frac{3}{8}

8

3

ar( \parallel^{\normalsize{gm}}∥

gm

ABCD )

\bf{\underline {proof}}

proof

:

\bf{ Construction }Construction :

Join BD,

draw mid point (\bf{P}P ) on AD and join XP

=> ar(Δ CXY) = \frac{1}{4}

4

1

(Δ BCD)

[ \therefore∴ X and Y are mid points ]

So,

=> ar(Δ CXY) = \frac{1}{4}

4

1

[ ar(\frac{1}{2}

2

1

\parallel^{\normalsize{gm}}∥

gm

ABCD ) ]

=> ar(Δ CXY) = \frac{1}{8}

8

1

ar( \parallel^{\normalsize{gm}}∥

gm

ABCD ) ___(i)

Now,

=> ar(Δ ABX) = \frac{1}{2}

2

1

ar( \parallel^{\normalsize{gm}}∥

gm

ABXP )

=> ar(Δ ABX) = \frac{1}{2}

2

1

ar [ \frac{1}{2}

2

1

ar( \parallel^{\normalsize{gm}}∥

gm

ABCD ) ]

=> ar(Δ ABX) = \frac{1}{4}

4

1

ar( \parallel^{\normalsize{gm}}∥

gm

ABCD )___(ii)

Similarly,

=> ar(Δ ADY) = \frac{1}{4}

4

1

ar ( \parallel^{\normalsize{gm}}∥

gm

ABCD )___(iii)

From figure,

=> ar(Δ AXY) = ar( \parallel^{\normalsize{gm}}∥

gm

ABCD ) - ar(Δ ABX) - ar(Δ CXY) - ar(ΔADY)

=> ar(Δ AXY) = ar( \parallel^{\normalsize{gm}}∥

gm

ABCD ) - \frac{1}{4}

4

1

ar( \parallel^{\normalsize{gm}}∥

gm

ABCD) - \frac{1}{8}

8

1

ar( \parallel^{\normalsize{gm}}∥

gm

ABCD ) - \frac{1}{4}

4

1

ar ( \parallel^{\normalsize{gm}}∥

gm

ABCD)

=> ar(Δ AXY) = ar( \parallel^{\normalsize{gm}}∥

gm

ABCD ) [ 1 - \frac{1}{4}

4

1

- \frac{1}{8}

8

1

- \frac{1}{4}

4

1

]

=> ar(Δ AXY) = ar( \parallel^{\normalsize{gm}}∥

gm

ABCD) [ \frac{8-2-1-2}{8}

8

8−2−1−2

]

=> ar(Δ AXY) = ar( \parallel^{\normalsize{gm}}∥

gm

ABCD) \frac{3}{8}

8

3

=> ar(Δ AXY) = \frac{3}{8}

8

3

ar( \parallel^{\normalsize{gm}}∥

gm

ABCD)

\bf{Hence,\:proved }Hence,proved

Similar questions