Math, asked by rohitchatterjee420, 2 days ago

Answer this question pls. And show the detailed steps also. No spam answers.

Attachments:

Answers

Answered by mathdude500
4

Given Question :-

The smallest positive integer n for which

\rm :\longmapsto\: {\bigg[\dfrac{1 + i}{1 - i} \bigg]}^{n} = 1

(a) 1

(b) 2

(c) 3

(d) 4

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\: {\bigg[\dfrac{1 + i}{1 - i} \bigg]}^{n} = 1

On rationalizing the denominator, we get

\rm :\longmapsto\: {\bigg[\dfrac{1 + i}{1 - i} \times \dfrac{1 + i}{1 + i}  \bigg]}^{n} = 1

We know,

\boxed{ \tt{ \:  {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2} \: }}

and

\boxed{ \tt{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using these Identities, we get

\rm :\longmapsto\: {\bigg[\dfrac{ 1+ {i}^{2} + 2i  }{ {1}^{2}  -  {i}^{2} } \bigg]}^{n} = 1

We know,

\boxed{ \tt{ \:  {i}^{2} =  - 1 \: }}

So, using this, we get

\rm :\longmapsto\: {\bigg[\dfrac{1 - 1 + 2i}{1 + 1} \bigg]}^{n}  = 1

\rm :\longmapsto\: {\bigg[\dfrac{2i}{2} \bigg]}^{n}  = 1

\rm :\longmapsto\: {i}^{n} = 1

\rm :\longmapsto\: {i}^{n} =  {i}^{4}

\bf\implies \:\boxed{ \tt{  \: \: n \:  =  \: 4 \:  \: }}

  • Hence, Option (d) is correct.

More to know :-

 \red{\rm :\longmapsto\:i =  \sqrt{ - 1}  \: }

 \red{\rm :\longmapsto\: {i}^{3} =  - 1}

 \red{\rm :\longmapsto\: {i}^{4} = 1}

 \red{\rm :\longmapsto\: {i}^{x} +  {i}^{x + 1} +  {i}^{x + 2} +  {i}^{x + 3}  = 0 \: where \: x \: is \: natural \: number}

 \red{\rm :\longmapsto\:\dfrac{1}{i} =  - i}

Similar questions