Math, asked by SudhirRai, 1 year ago

answer this question plz

Attachments:

Answers

Answered by Yuichiro13
2
Heya

 \frac{ \sin( \alpha )  -  { 2\sin( \alpha ) }^{3} }{2 { \cos( \alpha ) }^{3}  -  \cos( \alpha ) }  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  \times  \frac{1 -  { 2\sin( \alpha ) }^{2} }{2 { \cos( \alpha ) }^{2} - 1 }


Now,

1 -  { 2\sin( \alpha ) }^{2}  = \cos( \alpha^{2} ) -  { \sin( \alpha ) }^{2}

Similarly, the denominator also breaks to :
2 { \cos( \alpha ) }^{2}  - 1 =  { \cos( \alpha ) }^{2}  -  { \sin( \alpha ) }^{2}

Hence, our expression reduces to :
\frac{ \sin( \alpha ) }{ \cos( \alpha ) }  \times  \frac{1 -  { 2\sin( \alpha ) }^{2} }{2 { \cos( \alpha ) }^{2} - 1 }  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }   \times  \frac{ { \cos( \alpha ) }^{2} -  { \sin( \alpha ) }^{2}  }{ { \cos( \alpha ) }^{2} -  { \sin( \alpha ) }^{2}  }

 =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  =  \tan( \alpha )
Similar questions