Math, asked by kavya410004, 4 months ago

Answer this question soon! Thanks in advance! ​

Attachments:

Answers

Answered by anindyaadhikari13
6

Required Answer:-

Given:

 \sf \dfrac{ \sin(x) }{ \sin({}^{x}/  _{8} ) }  =  \lambda \cos({}^{x}/_{8})  \cos({}^{x}/_{4}) \cos({}^{x}/_{2})

To Find:

  • The value of λ.

Answer:

  • λ = 8

Solution:

We know that,

\sf \implies \sin(2x)  = 2 \sin(x) \cos(x)

Therefore,

 \sf \implies \dfrac{ \sin(x) }{ \sin({}^{x}/  _{8} ) }  =  \lambda \cos({}^{x}/_{8})  \cos({}^{x}/_{4}) \cos({}^{x}/_{2})

 \sf \implies \dfrac{ \sin(2 \times  {}^{x}/_{2}) }{ \sin({}^{x}/  _{8} ) }  =  \lambda \cos({}^{x}/_{8})  \cos({}^{x}/_{4}) \cos({}^{x}/_{2})

 \sf \implies \dfrac{ 2\sin({}^{x}/_{2}) \cos({}^{x}/_{2})  }{ \sin({}^{x}/  _{8} ) }  =  \lambda \cos({}^{x}/_{8})  \cos({}^{x}/_{4}) \cos({}^{x}/_{2})

Cancelling out cos(x/2) from both sides, we get,

 \sf \implies \dfrac{ 2\sin({}^{x}/_{2})}{ \sin({}^{x}/  _{8} ) }  =  \lambda \cos({}^{x}/_{8})  \cos({}^{x}/_{4})

Again, applying same formula, we get,

 \sf \implies \dfrac{ 2\sin(2 \times {}^{x}/_{4})}{ \sin({}^{x}/  _{8} ) }  =  \lambda \cos({}^{x}/_{8})  \cos({}^{x}/_{4})

 \sf \implies \dfrac{ 2 \times 2\sin({}^{x}/_{4}) \cos({}^{x}/_{4})  }{ \sin({}^{x}/  _{8} ) }  =  \lambda \cos({}^{x}/_{8})  \cos({}^{x}/_{4})

Cancelling out cos(x/4) from both sides, we get,

 \sf \implies \dfrac{4\sin({}^{x}/_{4})}{ \sin({}^{x}/  _{8} ) }  =  \lambda \cos({}^{x}/_{8})

Applying same formula again, we get,

 \sf \implies \dfrac{4\sin(2 \times {}^{x}/_{8})}{ \sin({}^{x}/  _{8} ) }  =  \lambda \cos({}^{x}/_{8})

 \sf \implies \dfrac{4 \times 2\sin({}^{x}/_{8}) \cos({}^{x}/ _{8}) }{ \sin({}^{x}/  _{8} ) }  =  \lambda \cos({}^{x}/_{8})

 \sf \implies \dfrac{8 \cancel{\sin({}^{x}/_{8})} \cos({}^{x}/ _{8}) }{  \cancel{\sin({}^{x}/  _{8}} ) }  =  \lambda \cos({}^{x}/_{8})

 \sf \implies 8 \cos({}^{x}/ _{8}) =  \lambda \cos({}^{x}/_{8})

 \sf \implies 8  =   \lambda

 \sf \implies \lambda = 8

Hence, λ = 8.

Answer:

  • λ = 8.

•••♪

Similar questions