Math, asked by shinystar27007, 3 days ago

Answer this question step by step, I don't want any invalid answer ​

Attachments:

Answers

Answered by Daiwikisajoke
0

Answer:

The correct answer is Option A: (\frac{p}{q} )^{2p} .

Step-by-step explanation:

= \frac{(p + \frac{1}{q} )^{p-q} * (p - \frac{1}{q} )^{p+q} }{(q + \frac{1}{p} )^{p-q} * (q - \frac{1}{p} )^{p+q}  }

= \frac{(\frac{p}{1} + \frac{1}{q} )^{p-q} * (\frac{p}{1} - \frac{1}{q} )^{p+q} }{(\frac{q}{1}  + \frac{1}{p} )^{p-q} * (\frac{q}{1}  - \frac{1}{p} )^{p+q}  }

= \frac{(\frac{(pq+1)}{q}  )^{p-q} * (\frac{(pq-1)}{q}  )^{p+q} }{(\frac{q}{1}  + \frac{1}{p} )^{p-q} * (\frac{q}{1}  - \frac{1}{p} )^{p+q}  }

= \frac{(\frac{(pq+1)}{q}  )^{p-q} * (\frac{(pq-1)}{q}  )^{p+q} }{(\frac{(pq+1)}{p}  )^{p-q} * (\frac{(pq-1)}{p}  )^{p+q}  }

= \frac{(pq+1)^{p-q} }{(q)^{p-q} }   * \frac{(pq-1)^{p+q} }{(q)^{p+q} } ÷ \frac{(pq+1)^{p-q} }{(p)^{p-q} } * \frac{(pq-1)^{p+q} }{(p)^{p+q}}

= \frac{(pq+1)^{p-q} * (pq-1)^{p+q} }{(q)^{p-q+p+q} } ÷ \frac{(pq+1)^{p-q} * (pq-1)^{p+q} }{(p)^{p-q+p+q} }

=  \frac{(pq+1)^{p-q} * (pq-1)^{p+q} }{(q)^{2p} } ÷ \frac{(pq+1)^{p-q} * (pq-1)^{p+q} }{(p)^{2p} }

= \frac{(pq+1)^{p-q} * (pq-1)^{p+q} }{(q)^{2p} } × \frac{(p)^{2p}}{(pq+1)^{p-q} * (pq-1)^{p+q} }

= \frac{(p)^{2p} }{(q)^{2p} }

= (\frac{p}{q} )^{2p}

Similar questions